Ontology type: schema:Chapter Open Access: True
2012
AUTHORS ABSTRACTIn this paper, a fully compressed pattern matching problem is studied. The compression is represented by straight-line programs (SLPs), i.e. a context-free grammar generating exactly one string; the term fully means that both the pattern and the text are given in the compressed form. The problem is approached using a recently developed technique of local recompression: the SLPs are refactored, so that substrings of the pattern and text are encoded in both SLPs in the same way. To this end, the SLPs are locally decompressed and then recompressed in a uniform way.This technique yields an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}((n+m)\log M \log(n+m))$\end{document} algorithm for compressed pattern matching, where n (m) is the size of the compressed representation of the text (pattern, respectively), while M is the size of the decompressed pattern. Since M ≤ 2m, this substantially improves the previously best \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}(m^2n)$\end{document} algorithm.Since LZ compression standard reduces to SLP with log( N / n) overhead and in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}(n \log(N/n))$\end{document} time, the presented algorithm can be applied also to the fully LZ-compressed pattern matching problem, yielding an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}(s \log s \log M)$\end{document} running time, where s = n log(N/n) + m log(M/m). More... »
PAGES533-544
Automata, Languages, and Programming
ISBN
978-3-642-31593-0
978-3-642-31594-7
http://scigraph.springernature.com/pub.10.1007/978-3-642-31594-7_45
DOIhttp://dx.doi.org/10.1007/978-3-642-31594-7_45
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1026589735
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Computer Science, University of Wroc\u0142aw, Poland",
"id": "http://www.grid.ac/institutes/grid.8505.8",
"name": [
"Institute of Computer Science, University of Wroc\u0142aw, Poland"
],
"type": "Organization"
},
"familyName": "Je\u017c",
"givenName": "Artur",
"id": "sg:person.015252371751.76",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015252371751.76"
],
"type": "Person"
}
],
"datePublished": "2012",
"datePublishedReg": "2012-01-01",
"description": "In this paper, a fully compressed pattern matching problem is studied. The compression is represented by straight-line programs (SLPs), i.e. a context-free grammar generating exactly one string; the term fully means that both the pattern and the text are given in the compressed form. The problem is approached using a recently developed technique of local recompression: the SLPs are refactored, so that substrings of the pattern and text are encoded in both SLPs in the same way. To this end, the SLPs are locally decompressed and then recompressed in a uniform way.This technique yields an \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{O}((n+m)\\log M \\log(n+m))$\\end{document} algorithm for compressed pattern matching, where n (m) is the size of the compressed representation of the text (pattern, respectively), while M is the size of the decompressed pattern. Since M\u2009\u2264\u20092m, this substantially improves the previously best \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{O}(m^2n)$\\end{document} algorithm.Since LZ compression standard reduces to SLP with log( N / n) overhead and in \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{O}(n \\log(N/n))$\\end{document} time, the presented algorithm can be applied also to the fully LZ-compressed pattern matching problem, yielding an \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{O}(s \\log s \\log M)$\\end{document} running time, where s\u2009=\u2009n log(N/n)\u2009+\u2009m log(M/m).",
"editor": [
{
"familyName": "Czumaj",
"givenName": "Artur",
"type": "Person"
},
{
"familyName": "Mehlhorn",
"givenName": "Kurt",
"type": "Person"
},
{
"familyName": "Pitts",
"givenName": "Andrew",
"type": "Person"
},
{
"familyName": "Wattenhofer",
"givenName": "Roger",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-31594-7_45",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-642-31593-0",
"978-3-642-31594-7"
],
"name": "Automata, Languages, and Programming",
"type": "Book"
},
"keywords": [
"compression standard",
"size",
"compressed pattern matching",
"technique",
"algorithm",
"pattern matching",
"matching",
"matching problem",
"paper",
"standards",
"time",
"way",
"uniform way",
"problem",
"end",
"compression",
"recompression",
"running time",
"terms",
"patterns",
"same way",
"form",
"LZ",
"strings",
"logs",
"program",
"substrings",
"pattern matching problem",
"straight-line programs",
"context-free grammars",
"representation",
"text",
"grammar"
],
"name": "Faster Fully Compressed Pattern Matching by Recompression",
"pagination": "533-544",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1026589735"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-31594-7_45"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-31594-7_45",
"https://app.dimensions.ai/details/publication/pub.1026589735"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:47",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_398.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-31594-7_45"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31594-7_45'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31594-7_45'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31594-7_45'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31594-7_45'
This table displays all metadata directly associated to this object as RDF triples.
108 TRIPLES
23 PREDICATES
59 URIs
52 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-31594-7_45 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | schema:author | Nae40c4d63e704bafb650d69102bd38a4 |
4 | ″ | schema:datePublished | 2012 |
5 | ″ | schema:datePublishedReg | 2012-01-01 |
6 | ″ | schema:description | In this paper, a fully compressed pattern matching problem is studied. The compression is represented by straight-line programs (SLPs), i.e. a context-free grammar generating exactly one string; the term fully means that both the pattern and the text are given in the compressed form. The problem is approached using a recently developed technique of local recompression: the SLPs are refactored, so that substrings of the pattern and text are encoded in both SLPs in the same way. To this end, the SLPs are locally decompressed and then recompressed in a uniform way.This technique yields an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}((n+m)\log M \log(n+m))$\end{document} algorithm for compressed pattern matching, where n (m) is the size of the compressed representation of the text (pattern, respectively), while M is the size of the decompressed pattern. Since M ≤ 2m, this substantially improves the previously best \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}(m^2n)$\end{document} algorithm.Since LZ compression standard reduces to SLP with log( N / n) overhead and in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}(n \log(N/n))$\end{document} time, the presented algorithm can be applied also to the fully LZ-compressed pattern matching problem, yielding an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}(s \log s \log M)$\end{document} running time, where s = n log(N/n) + m log(M/m). |
7 | ″ | schema:editor | Nbb2141920c7b439e8df2fc85653bac42 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | N1be13cf3336344d0a26c67c7b5388702 |
12 | ″ | schema:keywords | LZ |
13 | ″ | ″ | algorithm |
14 | ″ | ″ | compressed pattern matching |
15 | ″ | ″ | compression |
16 | ″ | ″ | compression standard |
17 | ″ | ″ | context-free grammars |
18 | ″ | ″ | end |
19 | ″ | ″ | form |
20 | ″ | ″ | grammar |
21 | ″ | ″ | logs |
22 | ″ | ″ | matching |
23 | ″ | ″ | matching problem |
24 | ″ | ″ | paper |
25 | ″ | ″ | pattern matching |
26 | ″ | ″ | pattern matching problem |
27 | ″ | ″ | patterns |
28 | ″ | ″ | problem |
29 | ″ | ″ | program |
30 | ″ | ″ | recompression |
31 | ″ | ″ | representation |
32 | ″ | ″ | running time |
33 | ″ | ″ | same way |
34 | ″ | ″ | size |
35 | ″ | ″ | standards |
36 | ″ | ″ | straight-line programs |
37 | ″ | ″ | strings |
38 | ″ | ″ | substrings |
39 | ″ | ″ | technique |
40 | ″ | ″ | terms |
41 | ″ | ″ | text |
42 | ″ | ″ | time |
43 | ″ | ″ | uniform way |
44 | ″ | ″ | way |
45 | ″ | schema:name | Faster Fully Compressed Pattern Matching by Recompression |
46 | ″ | schema:pagination | 533-544 |
47 | ″ | schema:productId | N38615502b12a4159b904a5d2bd96784f |
48 | ″ | ″ | N96c677560a9c46778325f714722257e3 |
49 | ″ | schema:publisher | Nee20b70b52304459969616ff8a733a2b |
50 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1026589735 |
51 | ″ | ″ | https://doi.org/10.1007/978-3-642-31594-7_45 |
52 | ″ | schema:sdDatePublished | 2022-05-20T07:47 |
53 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
54 | ″ | schema:sdPublisher | N31384b8d70d34b11a5039c3a9a51e665 |
55 | ″ | schema:url | https://doi.org/10.1007/978-3-642-31594-7_45 |
56 | ″ | sgo:license | sg:explorer/license/ |
57 | ″ | sgo:sdDataset | chapters |
58 | ″ | rdf:type | schema:Chapter |
59 | N0cee23944f9b4e5495dddacc3abd80ad | schema:familyName | Czumaj |
60 | ″ | schema:givenName | Artur |
61 | ″ | rdf:type | schema:Person |
62 | N1be13cf3336344d0a26c67c7b5388702 | schema:isbn | 978-3-642-31593-0 |
63 | ″ | ″ | 978-3-642-31594-7 |
64 | ″ | schema:name | Automata, Languages, and Programming |
65 | ″ | rdf:type | schema:Book |
66 | N25f2a45b38ed465583ce7ef1dec71407 | schema:familyName | Mehlhorn |
67 | ″ | schema:givenName | Kurt |
68 | ″ | rdf:type | schema:Person |
69 | N31384b8d70d34b11a5039c3a9a51e665 | schema:name | Springer Nature - SN SciGraph project |
70 | ″ | rdf:type | schema:Organization |
71 | N38615502b12a4159b904a5d2bd96784f | schema:name | doi |
72 | ″ | schema:value | 10.1007/978-3-642-31594-7_45 |
73 | ″ | rdf:type | schema:PropertyValue |
74 | N532f1039fa6448b58357ad5f55adabbc | rdf:first | N25f2a45b38ed465583ce7ef1dec71407 |
75 | ″ | rdf:rest | N76b0996833ba44cabc0b8fecbf698172 |
76 | N6f93bb324c2b48ea8be994e837a7cc7e | schema:familyName | Wattenhofer |
77 | ″ | schema:givenName | Roger |
78 | ″ | rdf:type | schema:Person |
79 | N76b0996833ba44cabc0b8fecbf698172 | rdf:first | N8fa2f986ff504750b62ba67f282655c1 |
80 | ″ | rdf:rest | Nb2e1e9b52fea4496b9615775b331723e |
81 | N8fa2f986ff504750b62ba67f282655c1 | schema:familyName | Pitts |
82 | ″ | schema:givenName | Andrew |
83 | ″ | rdf:type | schema:Person |
84 | N96c677560a9c46778325f714722257e3 | schema:name | dimensions_id |
85 | ″ | schema:value | pub.1026589735 |
86 | ″ | rdf:type | schema:PropertyValue |
87 | Nae40c4d63e704bafb650d69102bd38a4 | rdf:first | sg:person.015252371751.76 |
88 | ″ | rdf:rest | rdf:nil |
89 | Nb2e1e9b52fea4496b9615775b331723e | rdf:first | N6f93bb324c2b48ea8be994e837a7cc7e |
90 | ″ | rdf:rest | rdf:nil |
91 | Nbb2141920c7b439e8df2fc85653bac42 | rdf:first | N0cee23944f9b4e5495dddacc3abd80ad |
92 | ″ | rdf:rest | N532f1039fa6448b58357ad5f55adabbc |
93 | Nee20b70b52304459969616ff8a733a2b | schema:name | Springer Nature |
94 | ″ | rdf:type | schema:Organisation |
95 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
96 | ″ | schema:name | Information and Computing Sciences |
97 | ″ | rdf:type | schema:DefinedTerm |
98 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
99 | ″ | schema:name | Artificial Intelligence and Image Processing |
100 | ″ | rdf:type | schema:DefinedTerm |
101 | sg:person.015252371751.76 | schema:affiliation | grid-institutes:grid.8505.8 |
102 | ″ | schema:familyName | Jeż |
103 | ″ | schema:givenName | Artur |
104 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015252371751.76 |
105 | ″ | rdf:type | schema:Person |
106 | grid-institutes:grid.8505.8 | schema:alternateName | Institute of Computer Science, University of Wrocław, Poland |
107 | ″ | schema:name | Institute of Computer Science, University of Wrocław, Poland |
108 | ″ | rdf:type | schema:Organization |