hypDE: A Hyper-Heuristic Based on Differential Evolution for Solving Constrained Optimization Problems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

José Carlos Villela Tinoco , Carlos A. Coello Coello

ABSTRACT

In this paper, we present a hyper-heuristic, based on Differential Evolution, for solving constrained optimization problems. Differential Evolution has been found to be a very effective and efficient optimization algorithm for continuous search spaces, which motivated us to adopt it as our search engine for dealing with constrained optimization problems. In our proposed hyper-heuristic, we adopt twelve differential evolution models for our low-level heuristic.We also adopt four selection mechanisms for choosing the low-level heuristic. The proposed approach is validated using a well-known benchmark for constrained evolutionary optimization. Results are compared with respect to those obtained by a state-of-theart constrained differential evolution algorithm (CDE) and another hyper-heuristic that adopts a random descent selection mechanism. Our results indicate that our proposed approach is a viable alternative for dealing with constrained optimization problems. More... »

PAGES

267-282

References to SciGraph publications

  • 2003-12. A Tabu-Search Hyperheuristic for Timetabling and Rostering in JOURNAL OF HEURISTICS
  • 2003. Hyper-Heuristics: An Emerging Direction in Modern Search Technology in HANDBOOK OF METAHEURISTICS
  • 2008. Hyperheuristics: Recent Developments in ADAPTIVE AND MULTILEVEL METAHEURISTICS
  • 2001. A Hyperheuristic Approach to Scheduling a Sales Summit in PRACTICE AND THEORY OF AUTOMATED TIMETABLING III
  • Book

    TITLE

    EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II

    ISBN

    978-3-642-31518-3
    978-3-642-31519-0

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-31519-0_17

    DOI

    http://dx.doi.org/10.1007/978-3-642-31519-0_17

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1015203988


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Instituto Polit\u00e9cnico Nacional", 
              "id": "https://www.grid.ac/institutes/grid.418275.d", 
              "name": [
                "Departamento de Computaci\u00f3n, CINVESTAV-IPN (Evolutionary Computation Group), Av. IPN No. 2508 Col. San Pedro Zacatenco, M\u00e9xico, D.F., 07360, M\u00e9xico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tinoco", 
            "givenName": "Jos\u00e9 Carlos Villela", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto Polit\u00e9cnico Nacional", 
              "id": "https://www.grid.ac/institutes/grid.418275.d", 
              "name": [
                "Departamento de Computaci\u00f3n, CINVESTAV-IPN (Evolutionary Computation Group), Av. IPN No. 2508 Col. San Pedro Zacatenco, M\u00e9xico, D.F., 07360, M\u00e9xico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Coello", 
            "givenName": "Carlos A. Coello", 
            "id": "sg:person.012160505340.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160505340.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-540-79438-7_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024357931", 
              "https://doi.org/10.1007/978-3-540-79438-7_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1569901.1570081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024491736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:heur.0000012446.94732.b6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031367547", 
              "https://doi.org/10.1023/b:heur.0000012446.94732.b6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44629-x_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042796284", 
              "https://doi.org/10.1007/3-540-44629-x_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/4235.585893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061171983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/4235.873238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061172057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2008.2006935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061623273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/ijoc.7.4.453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064707563"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/0-306-48056-5_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084967329", 
              "https://doi.org/10.1007/0-306-48056-5_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cec.2002.1004459", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093307195"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013", 
        "datePublishedReg": "2013-01-01", 
        "description": "In this paper, we present a hyper-heuristic, based on Differential Evolution, for solving constrained optimization problems. Differential Evolution has been found to be a very effective and efficient optimization algorithm for continuous search spaces, which motivated us to adopt it as our search engine for dealing with constrained optimization problems. In our proposed hyper-heuristic, we adopt twelve differential evolution models for our low-level heuristic.We also adopt four selection mechanisms for choosing the low-level heuristic. The proposed approach is validated using a well-known benchmark for constrained evolutionary optimization. Results are compared with respect to those obtained by a state-of-theart constrained differential evolution algorithm (CDE) and another hyper-heuristic that adopts a random descent selection mechanism. Our results indicate that our proposed approach is a viable alternative for dealing with constrained optimization problems.", 
        "editor": [
          {
            "familyName": "Sch\u00fctze", 
            "givenName": "Oliver", 
            "type": "Person"
          }, 
          {
            "familyName": "Coello Coello", 
            "givenName": "Carlos A.", 
            "type": "Person"
          }, 
          {
            "familyName": "Tantar", 
            "givenName": "Alexandru-Adrian", 
            "type": "Person"
          }, 
          {
            "familyName": "Tantar", 
            "givenName": "Emilia", 
            "type": "Person"
          }, 
          {
            "familyName": "Bouvry", 
            "givenName": "Pascal", 
            "type": "Person"
          }, 
          {
            "familyName": "Del Moral", 
            "givenName": "Pierre", 
            "type": "Person"
          }, 
          {
            "familyName": "Legrand", 
            "givenName": "Pierrick", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-31519-0_17", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-31518-3", 
            "978-3-642-31519-0"
          ], 
          "name": "EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II", 
          "type": "Book"
        }, 
        "name": "hypDE: A Hyper-Heuristic Based on Differential Evolution for Solving Constrained Optimization Problems", 
        "pagination": "267-282", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-31519-0_17"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "487025d770424d1fa649967b3bbaa908d10f4849e505aecf457b76a3b30903e0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1015203988"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-31519-0_17", 
          "https://app.dimensions.ai/details/publication/pub.1015203988"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T10:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000252.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-642-31519-0_17"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31519-0_17'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31519-0_17'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31519-0_17'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31519-0_17'


     

    This table displays all metadata directly associated to this object as RDF triples.

    135 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-31519-0_17 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N130dacfd90f6466888fbf97795230239
    4 schema:citation sg:pub.10.1007/0-306-48056-5_16
    5 sg:pub.10.1007/3-540-44629-x_11
    6 sg:pub.10.1007/978-3-540-79438-7_1
    7 sg:pub.10.1023/b:heur.0000012446.94732.b6
    8 https://doi.org/10.1109/4235.585893
    9 https://doi.org/10.1109/4235.873238
    10 https://doi.org/10.1109/cec.2002.1004459
    11 https://doi.org/10.1109/tie.2008.2006935
    12 https://doi.org/10.1145/1569901.1570081
    13 https://doi.org/10.1287/ijoc.7.4.453
    14 schema:datePublished 2013
    15 schema:datePublishedReg 2013-01-01
    16 schema:description In this paper, we present a hyper-heuristic, based on Differential Evolution, for solving constrained optimization problems. Differential Evolution has been found to be a very effective and efficient optimization algorithm for continuous search spaces, which motivated us to adopt it as our search engine for dealing with constrained optimization problems. In our proposed hyper-heuristic, we adopt twelve differential evolution models for our low-level heuristic.We also adopt four selection mechanisms for choosing the low-level heuristic. The proposed approach is validated using a well-known benchmark for constrained evolutionary optimization. Results are compared with respect to those obtained by a state-of-theart constrained differential evolution algorithm (CDE) and another hyper-heuristic that adopts a random descent selection mechanism. Our results indicate that our proposed approach is a viable alternative for dealing with constrained optimization problems.
    17 schema:editor N8aa6a02f614a4b56b99fa56c4f77831c
    18 schema:genre chapter
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N914acc10e485436e9b33ac935dd6f050
    22 schema:name hypDE: A Hyper-Heuristic Based on Differential Evolution for Solving Constrained Optimization Problems
    23 schema:pagination 267-282
    24 schema:productId N0640dc1c2a0c41d2abdc8341f22d87b3
    25 N1722a2683ace4198abdd0766cf811092
    26 N6e567ee92a574ca3aab3bb4636bb04d1
    27 schema:publisher N7ff4b4e900d9490c83c48ca88519ea62
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015203988
    29 https://doi.org/10.1007/978-3-642-31519-0_17
    30 schema:sdDatePublished 2019-04-15T10:32
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher Ne610fc35947b42e294a7858fb8951cfe
    33 schema:url http://link.springer.com/10.1007/978-3-642-31519-0_17
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset chapters
    36 rdf:type schema:Chapter
    37 N0640dc1c2a0c41d2abdc8341f22d87b3 schema:name readcube_id
    38 schema:value 487025d770424d1fa649967b3bbaa908d10f4849e505aecf457b76a3b30903e0
    39 rdf:type schema:PropertyValue
    40 N0675e681975b4a24b9f7b7397a5ba30f rdf:first N5eb2b112a0df4d68a7d41a7534c53988
    41 rdf:rest Nf6fef6c2844d4080942bd07b2966ef4e
    42 N130dacfd90f6466888fbf97795230239 rdf:first Ncb1bd1414d984076a2d74dd4356abddf
    43 rdf:rest Ne945dd81361a44769d54aea2c7822e2b
    44 N1722a2683ace4198abdd0766cf811092 schema:name doi
    45 schema:value 10.1007/978-3-642-31519-0_17
    46 rdf:type schema:PropertyValue
    47 N1e2b2982cd2d40f78f8b25d7571a1f60 schema:familyName Legrand
    48 schema:givenName Pierrick
    49 rdf:type schema:Person
    50 N251ad7b55d714c0492aa8c71b5d6ddd2 rdf:first N46a872334b4e4c66829200df51ddd434
    51 rdf:rest N8657ca17afc54113b497531fae203c3a
    52 N3bb4db84f1bb4c14bf6ca17c8cdb993e rdf:first Nef5d5a3bfe084902adac7035637ce3a1
    53 rdf:rest Nc795064dcbdb40cb876ea80e6bd32ac0
    54 N46a872334b4e4c66829200df51ddd434 schema:familyName Coello Coello
    55 schema:givenName Carlos A.
    56 rdf:type schema:Person
    57 N5eb2b112a0df4d68a7d41a7534c53988 schema:familyName Del Moral
    58 schema:givenName Pierre
    59 rdf:type schema:Person
    60 N6e567ee92a574ca3aab3bb4636bb04d1 schema:name dimensions_id
    61 schema:value pub.1015203988
    62 rdf:type schema:PropertyValue
    63 N7ff4b4e900d9490c83c48ca88519ea62 schema:location Berlin, Heidelberg
    64 schema:name Springer Berlin Heidelberg
    65 rdf:type schema:Organisation
    66 N8657ca17afc54113b497531fae203c3a rdf:first Ne65d9f5ae4fc431c98dbee2a08e9faba
    67 rdf:rest N3bb4db84f1bb4c14bf6ca17c8cdb993e
    68 N8aa6a02f614a4b56b99fa56c4f77831c rdf:first Nf4ff8dce829840549b27f70d41010db9
    69 rdf:rest N251ad7b55d714c0492aa8c71b5d6ddd2
    70 N914acc10e485436e9b33ac935dd6f050 schema:isbn 978-3-642-31518-3
    71 978-3-642-31519-0
    72 schema:name EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II
    73 rdf:type schema:Book
    74 N923e8abaa5da40e494befe1e186ac13f schema:familyName Bouvry
    75 schema:givenName Pascal
    76 rdf:type schema:Person
    77 Nc795064dcbdb40cb876ea80e6bd32ac0 rdf:first N923e8abaa5da40e494befe1e186ac13f
    78 rdf:rest N0675e681975b4a24b9f7b7397a5ba30f
    79 Ncb1bd1414d984076a2d74dd4356abddf schema:affiliation https://www.grid.ac/institutes/grid.418275.d
    80 schema:familyName Tinoco
    81 schema:givenName José Carlos Villela
    82 rdf:type schema:Person
    83 Ne610fc35947b42e294a7858fb8951cfe schema:name Springer Nature - SN SciGraph project
    84 rdf:type schema:Organization
    85 Ne65d9f5ae4fc431c98dbee2a08e9faba schema:familyName Tantar
    86 schema:givenName Alexandru-Adrian
    87 rdf:type schema:Person
    88 Ne945dd81361a44769d54aea2c7822e2b rdf:first sg:person.012160505340.13
    89 rdf:rest rdf:nil
    90 Nef5d5a3bfe084902adac7035637ce3a1 schema:familyName Tantar
    91 schema:givenName Emilia
    92 rdf:type schema:Person
    93 Nf4ff8dce829840549b27f70d41010db9 schema:familyName Schütze
    94 schema:givenName Oliver
    95 rdf:type schema:Person
    96 Nf6fef6c2844d4080942bd07b2966ef4e rdf:first N1e2b2982cd2d40f78f8b25d7571a1f60
    97 rdf:rest rdf:nil
    98 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Mathematical Sciences
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Numerical and Computational Mathematics
    103 rdf:type schema:DefinedTerm
    104 sg:person.012160505340.13 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
    105 schema:familyName Coello
    106 schema:givenName Carlos A. Coello
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160505340.13
    108 rdf:type schema:Person
    109 sg:pub.10.1007/0-306-48056-5_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084967329
    110 https://doi.org/10.1007/0-306-48056-5_16
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/3-540-44629-x_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042796284
    113 https://doi.org/10.1007/3-540-44629-x_11
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/978-3-540-79438-7_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024357931
    116 https://doi.org/10.1007/978-3-540-79438-7_1
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1023/b:heur.0000012446.94732.b6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031367547
    119 https://doi.org/10.1023/b:heur.0000012446.94732.b6
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1109/4235.585893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061171983
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1109/4235.873238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061172057
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1109/cec.2002.1004459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093307195
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1109/tie.2008.2006935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061623273
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1145/1569901.1570081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024491736
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1287/ijoc.7.4.453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064707563
    132 rdf:type schema:CreativeWork
    133 https://www.grid.ac/institutes/grid.418275.d schema:alternateName Instituto Politécnico Nacional
    134 schema:name Departamento de Computación, CINVESTAV-IPN (Evolutionary Computation Group), Av. IPN No. 2508 Col. San Pedro Zacatenco, México, D.F., 07360, México
    135 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...