Fast and Small Nonlinear Pseudorandom Number Generators for Computer Simulation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Samuel Neves , Filipe Araujo

ABSTRACT

In this paper we present Tyche, a nonlinear pseudorandom number generator designed for computer simulation. Tyche has a small 128-bit state and an expected period length of 2127. Unlike most nonlinear generators, Tyche is consistently fast across architectures, due to its very simple iteration function derived from ChaCha, one of today’s fastest stream ciphers.Tyche is especially amenable for the highly parallel environments we find today, in particular for Graphics Processing Units (GPUs), where it enables a very large number of uncorrelated parallel streams running independently. For example, 216 parallel independent streams are expected to generate about 296 pseudorandom numbers each, without overlaps.Additionally, we determine bounds for the period length and parallelism of our generators, and evaluate their statistical quality and performance. We compare Tyche and the variant Tyche-i to the XORWOW and TEA8 generators in CPUs and GPUs. Our comparisons show that Tyche and Tyche-i simultaneously achieve high performance and excellent statistical properties, particularly when compared to other nonlinear generators. More... »

PAGES

92-101

Book

TITLE

Parallel Processing and Applied Mathematics

ISBN

978-3-642-31463-6
978-3-642-31464-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-31464-3_10

DOI

http://dx.doi.org/10.1007/978-3-642-31464-3_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029031748


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computer Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "CISUC, Dept. of Informatics Engineering, University of Coimbra, Portugal", 
          "id": "http://www.grid.ac/institutes/grid.8051.c", 
          "name": [
            "CISUC, Dept. of Informatics Engineering, University of Coimbra, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neves", 
        "givenName": "Samuel", 
        "id": "sg:person.011136377232.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011136377232.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CISUC, Dept. of Informatics Engineering, University of Coimbra, Portugal", 
          "id": "http://www.grid.ac/institutes/grid.8051.c", 
          "name": [
            "CISUC, Dept. of Informatics Engineering, University of Coimbra, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Araujo", 
        "givenName": "Filipe", 
        "id": "sg:person.01165636016.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165636016.38"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "In this paper we present Tyche, a nonlinear pseudorandom number generator designed for computer simulation. Tyche has a small 128-bit state and an expected period length of 2127. Unlike most nonlinear generators, Tyche is consistently fast across architectures, due to its very simple iteration function derived from ChaCha, one of today\u2019s fastest stream ciphers.Tyche is especially amenable for the highly parallel environments we find today, in particular for Graphics Processing Units (GPUs), where it enables a very large number of uncorrelated parallel streams running independently. For example, 216 parallel independent streams are expected to generate about 296 pseudorandom numbers each, without overlaps.Additionally, we determine bounds for the period length and parallelism of our generators, and evaluate their statistical quality and performance. We compare Tyche and the variant Tyche-i to the XORWOW and TEA8 generators in CPUs and GPUs. Our comparisons show that Tyche and Tyche-i simultaneously achieve high performance and excellent statistical properties, particularly when compared to other nonlinear generators.", 
    "editor": [
      {
        "familyName": "Wyrzykowski", 
        "givenName": "Roman", 
        "type": "Person"
      }, 
      {
        "familyName": "Dongarra", 
        "givenName": "Jack", 
        "type": "Person"
      }, 
      {
        "familyName": "Karczewski", 
        "givenName": "Konrad", 
        "type": "Person"
      }, 
      {
        "familyName": "Wa\u015bniewski", 
        "givenName": "Jerzy", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-31464-3_10", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-31463-6", 
        "978-3-642-31464-3"
      ], 
      "name": "Parallel Processing and Applied Mathematics", 
      "type": "Book"
    }, 
    "keywords": [
      "nonlinear pseudorandom number generators", 
      "pseudorandom number generators", 
      "nonlinear generators", 
      "number generator", 
      "graphics processing units", 
      "excellent statistical properties", 
      "computer simulations", 
      "statistical properties", 
      "fast stream ciphers", 
      "iteration function", 
      "pseudorandom numbers", 
      "statistical quality", 
      "parallel independent streams", 
      "parallel environment", 
      "processing unit", 
      "parallel streams", 
      "independent streams", 
      "generator", 
      "simulations", 
      "stream cipher", 
      "bounds", 
      "period length", 
      "large number", 
      "high performance", 
      "Tyche", 
      "CPU", 
      "number", 
      "parallelism", 
      "cipher", 
      "performance", 
      "architecture", 
      "streams", 
      "ChaCha", 
      "properties", 
      "function", 
      "length", 
      "state", 
      "environment", 
      "comparison", 
      "today", 
      "example", 
      "quality", 
      "units", 
      "overlap", 
      "paper"
    ], 
    "name": "Fast and Small Nonlinear Pseudorandom Number Generators for Computer Simulation", 
    "pagination": "92-101", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029031748"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-31464-3_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-31464-3_10", 
      "https://app.dimensions.ai/details/publication/pub.1029031748"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_358.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-31464-3_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31464-3_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31464-3_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31464-3_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31464-3_10'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      22 PREDICATES      70 URIs      63 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-31464-3_10 schema:about anzsrc-for:08
2 anzsrc-for:0803
3 schema:author Ne2e3e483c3b74737aabc7e57d07f00c6
4 schema:datePublished 2012
5 schema:datePublishedReg 2012-01-01
6 schema:description In this paper we present Tyche, a nonlinear pseudorandom number generator designed for computer simulation. Tyche has a small 128-bit state and an expected period length of 2127. Unlike most nonlinear generators, Tyche is consistently fast across architectures, due to its very simple iteration function derived from ChaCha, one of today’s fastest stream ciphers.Tyche is especially amenable for the highly parallel environments we find today, in particular for Graphics Processing Units (GPUs), where it enables a very large number of uncorrelated parallel streams running independently. For example, 216 parallel independent streams are expected to generate about 296 pseudorandom numbers each, without overlaps.Additionally, we determine bounds for the period length and parallelism of our generators, and evaluate their statistical quality and performance. We compare Tyche and the variant Tyche-i to the XORWOW and TEA8 generators in CPUs and GPUs. Our comparisons show that Tyche and Tyche-i simultaneously achieve high performance and excellent statistical properties, particularly when compared to other nonlinear generators.
7 schema:editor N125ed8ff7ac6491ba5cc80d64e37c50e
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N7610b8d5b8c142e58c17b250b83ccf16
11 schema:keywords CPU
12 ChaCha
13 Tyche
14 architecture
15 bounds
16 cipher
17 comparison
18 computer simulations
19 environment
20 example
21 excellent statistical properties
22 fast stream ciphers
23 function
24 generator
25 graphics processing units
26 high performance
27 independent streams
28 iteration function
29 large number
30 length
31 nonlinear generators
32 nonlinear pseudorandom number generators
33 number
34 number generator
35 overlap
36 paper
37 parallel environment
38 parallel independent streams
39 parallel streams
40 parallelism
41 performance
42 period length
43 processing unit
44 properties
45 pseudorandom number generators
46 pseudorandom numbers
47 quality
48 simulations
49 state
50 statistical properties
51 statistical quality
52 stream cipher
53 streams
54 today
55 units
56 schema:name Fast and Small Nonlinear Pseudorandom Number Generators for Computer Simulation
57 schema:pagination 92-101
58 schema:productId N62d9c3a255ad44269c02892c70117566
59 N79301ce8a5b64578993d97325f69cfbd
60 schema:publisher Nc3e8b88be7db4a179db638d94fde818c
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029031748
62 https://doi.org/10.1007/978-3-642-31464-3_10
63 schema:sdDatePublished 2022-10-01T06:57
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N0bf519d4efa44487aa2951463da0b5b1
66 schema:url https://doi.org/10.1007/978-3-642-31464-3_10
67 sgo:license sg:explorer/license/
68 sgo:sdDataset chapters
69 rdf:type schema:Chapter
70 N0bf519d4efa44487aa2951463da0b5b1 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N125ed8ff7ac6491ba5cc80d64e37c50e rdf:first Nb0ae28803f9f4441ba13a678286c56e2
73 rdf:rest N62dfd9c4a5524c65a4dc73b3a0ea01f1
74 N28799fc161fa422db0ed991daf3f7c4c schema:familyName Karczewski
75 schema:givenName Konrad
76 rdf:type schema:Person
77 N62d9c3a255ad44269c02892c70117566 schema:name dimensions_id
78 schema:value pub.1029031748
79 rdf:type schema:PropertyValue
80 N62dfd9c4a5524c65a4dc73b3a0ea01f1 rdf:first N92ae066de0d6438297f19f292b030cf7
81 rdf:rest Ne33d4e84c4f64aa1aa64ab6471e103d0
82 N7610b8d5b8c142e58c17b250b83ccf16 schema:isbn 978-3-642-31463-6
83 978-3-642-31464-3
84 schema:name Parallel Processing and Applied Mathematics
85 rdf:type schema:Book
86 N79301ce8a5b64578993d97325f69cfbd schema:name doi
87 schema:value 10.1007/978-3-642-31464-3_10
88 rdf:type schema:PropertyValue
89 N92ae066de0d6438297f19f292b030cf7 schema:familyName Dongarra
90 schema:givenName Jack
91 rdf:type schema:Person
92 N94f9a035f17446879df40eeda9fc64f7 schema:familyName Waśniewski
93 schema:givenName Jerzy
94 rdf:type schema:Person
95 Na15b64b2b06c416f883a8872fb0a601f rdf:first sg:person.01165636016.38
96 rdf:rest rdf:nil
97 Nb0ae28803f9f4441ba13a678286c56e2 schema:familyName Wyrzykowski
98 schema:givenName Roman
99 rdf:type schema:Person
100 Nc3e8b88be7db4a179db638d94fde818c schema:name Springer Nature
101 rdf:type schema:Organisation
102 Ne2e3e483c3b74737aabc7e57d07f00c6 rdf:first sg:person.011136377232.42
103 rdf:rest Na15b64b2b06c416f883a8872fb0a601f
104 Ne33d4e84c4f64aa1aa64ab6471e103d0 rdf:first N28799fc161fa422db0ed991daf3f7c4c
105 rdf:rest Nfedfedfd908a4578af4d4d6924629fa3
106 Nfedfedfd908a4578af4d4d6924629fa3 rdf:first N94f9a035f17446879df40eeda9fc64f7
107 rdf:rest rdf:nil
108 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
109 schema:name Information and Computing Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
112 schema:name Computer Software
113 rdf:type schema:DefinedTerm
114 sg:person.011136377232.42 schema:affiliation grid-institutes:grid.8051.c
115 schema:familyName Neves
116 schema:givenName Samuel
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011136377232.42
118 rdf:type schema:Person
119 sg:person.01165636016.38 schema:affiliation grid-institutes:grid.8051.c
120 schema:familyName Araujo
121 schema:givenName Filipe
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165636016.38
123 rdf:type schema:Person
124 grid-institutes:grid.8051.c schema:alternateName CISUC, Dept. of Informatics Engineering, University of Coimbra, Portugal
125 schema:name CISUC, Dept. of Informatics Engineering, University of Coimbra, Portugal
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...