Fast and Small Nonlinear Pseudorandom Number Generators for Computer Simulation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Samuel Neves , Filipe Araujo

ABSTRACT

In this paper we present Tyche, a nonlinear pseudorandom number generator designed for computer simulation. Tyche has a small 128-bit state and an expected period length of 2127. Unlike most nonlinear generators, Tyche is consistently fast across architectures, due to its very simple iteration function derived from ChaCha, one of today’s fastest stream ciphers.Tyche is especially amenable for the highly parallel environments we find today, in particular for Graphics Processing Units (GPUs), where it enables a very large number of uncorrelated parallel streams running independently. For example, 216 parallel independent streams are expected to generate about 296 pseudorandom numbers each, without overlaps.Additionally, we determine bounds for the period length and parallelism of our generators, and evaluate their statistical quality and performance. We compare Tyche and the variant Tyche-i to the XORWOW and TEA8 generators in CPUs and GPUs. Our comparisons show that Tyche and Tyche-i simultaneously achieve high performance and excellent statistical properties, particularly when compared to other nonlinear generators. More... »

PAGES

92-101

Book

TITLE

Parallel Processing and Applied Mathematics

ISBN

978-3-642-31463-6
978-3-642-31464-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-31464-3_10

DOI

http://dx.doi.org/10.1007/978-3-642-31464-3_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029031748


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computer Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "CISUC, Dept. of Informatics Engineering, University of Coimbra, Portugal", 
          "id": "http://www.grid.ac/institutes/grid.8051.c", 
          "name": [
            "CISUC, Dept. of Informatics Engineering, University of Coimbra, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neves", 
        "givenName": "Samuel", 
        "id": "sg:person.011136377232.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011136377232.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CISUC, Dept. of Informatics Engineering, University of Coimbra, Portugal", 
          "id": "http://www.grid.ac/institutes/grid.8051.c", 
          "name": [
            "CISUC, Dept. of Informatics Engineering, University of Coimbra, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Araujo", 
        "givenName": "Filipe", 
        "id": "sg:person.01165636016.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165636016.38"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "In this paper we present Tyche, a nonlinear pseudorandom number generator designed for computer simulation. Tyche has a small 128-bit state and an expected period length of 2127. Unlike most nonlinear generators, Tyche is consistently fast across architectures, due to its very simple iteration function derived from ChaCha, one of today\u2019s fastest stream ciphers.Tyche is especially amenable for the highly parallel environments we find today, in particular for Graphics Processing Units (GPUs), where it enables a very large number of uncorrelated parallel streams running independently. For example, 216 parallel independent streams are expected to generate about 296 pseudorandom numbers each, without overlaps.Additionally, we determine bounds for the period length and parallelism of our generators, and evaluate their statistical quality and performance. We compare Tyche and the variant Tyche-i to the XORWOW and TEA8 generators in CPUs and GPUs. Our comparisons show that Tyche and Tyche-i simultaneously achieve high performance and excellent statistical properties, particularly when compared to other nonlinear generators.", 
    "editor": [
      {
        "familyName": "Wyrzykowski", 
        "givenName": "Roman", 
        "type": "Person"
      }, 
      {
        "familyName": "Dongarra", 
        "givenName": "Jack", 
        "type": "Person"
      }, 
      {
        "familyName": "Karczewski", 
        "givenName": "Konrad", 
        "type": "Person"
      }, 
      {
        "familyName": "Wa\u015bniewski", 
        "givenName": "Jerzy", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-31464-3_10", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-31463-6", 
        "978-3-642-31464-3"
      ], 
      "name": "Parallel Processing and Applied Mathematics", 
      "type": "Book"
    }, 
    "keywords": [
      "nonlinear pseudorandom number generators", 
      "pseudorandom number generators", 
      "nonlinear generators", 
      "number generator", 
      "graphics processing units", 
      "excellent statistical properties", 
      "computer simulations", 
      "statistical properties", 
      "fast stream ciphers", 
      "iteration function", 
      "pseudorandom numbers", 
      "statistical quality", 
      "parallel independent streams", 
      "parallel environment", 
      "processing unit", 
      "parallel streams", 
      "independent streams", 
      "generator", 
      "simulations", 
      "stream cipher", 
      "bounds", 
      "period length", 
      "large number", 
      "high performance", 
      "Tyche", 
      "CPU", 
      "number", 
      "parallelism", 
      "cipher", 
      "performance", 
      "architecture", 
      "streams", 
      "ChaCha", 
      "properties", 
      "function", 
      "length", 
      "state", 
      "environment", 
      "comparison", 
      "today", 
      "example", 
      "quality", 
      "units", 
      "overlap", 
      "paper"
    ], 
    "name": "Fast and Small Nonlinear Pseudorandom Number Generators for Computer Simulation", 
    "pagination": "92-101", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029031748"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-31464-3_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-31464-3_10", 
      "https://app.dimensions.ai/details/publication/pub.1029031748"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_338.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-31464-3_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31464-3_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31464-3_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31464-3_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31464-3_10'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      22 PREDICATES      70 URIs      63 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-31464-3_10 schema:about anzsrc-for:08
2 anzsrc-for:0803
3 schema:author N79afb2a7c07c494f824aa2cc2c1377d6
4 schema:datePublished 2012
5 schema:datePublishedReg 2012-01-01
6 schema:description In this paper we present Tyche, a nonlinear pseudorandom number generator designed for computer simulation. Tyche has a small 128-bit state and an expected period length of 2127. Unlike most nonlinear generators, Tyche is consistently fast across architectures, due to its very simple iteration function derived from ChaCha, one of today’s fastest stream ciphers.Tyche is especially amenable for the highly parallel environments we find today, in particular for Graphics Processing Units (GPUs), where it enables a very large number of uncorrelated parallel streams running independently. For example, 216 parallel independent streams are expected to generate about 296 pseudorandom numbers each, without overlaps.Additionally, we determine bounds for the period length and parallelism of our generators, and evaluate their statistical quality and performance. We compare Tyche and the variant Tyche-i to the XORWOW and TEA8 generators in CPUs and GPUs. Our comparisons show that Tyche and Tyche-i simultaneously achieve high performance and excellent statistical properties, particularly when compared to other nonlinear generators.
7 schema:editor N04e487962e6240678f7916422cdf44bf
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nfd45463502734cea94f351135fd01252
11 schema:keywords CPU
12 ChaCha
13 Tyche
14 architecture
15 bounds
16 cipher
17 comparison
18 computer simulations
19 environment
20 example
21 excellent statistical properties
22 fast stream ciphers
23 function
24 generator
25 graphics processing units
26 high performance
27 independent streams
28 iteration function
29 large number
30 length
31 nonlinear generators
32 nonlinear pseudorandom number generators
33 number
34 number generator
35 overlap
36 paper
37 parallel environment
38 parallel independent streams
39 parallel streams
40 parallelism
41 performance
42 period length
43 processing unit
44 properties
45 pseudorandom number generators
46 pseudorandom numbers
47 quality
48 simulations
49 state
50 statistical properties
51 statistical quality
52 stream cipher
53 streams
54 today
55 units
56 schema:name Fast and Small Nonlinear Pseudorandom Number Generators for Computer Simulation
57 schema:pagination 92-101
58 schema:productId N03bfcad0a07f4682b4b167291e7793bf
59 N5380a84a6bb7421c9f18922095a98c4d
60 schema:publisher N5ea60c0ce9734edf93619afe227a34c4
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029031748
62 https://doi.org/10.1007/978-3-642-31464-3_10
63 schema:sdDatePublished 2022-12-01T06:51
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N5612a88b559b408d97c46c6cc1a2c408
66 schema:url https://doi.org/10.1007/978-3-642-31464-3_10
67 sgo:license sg:explorer/license/
68 sgo:sdDataset chapters
69 rdf:type schema:Chapter
70 N03bfcad0a07f4682b4b167291e7793bf schema:name dimensions_id
71 schema:value pub.1029031748
72 rdf:type schema:PropertyValue
73 N04e487962e6240678f7916422cdf44bf rdf:first N5e88a80c6d714736a9af53759911667c
74 rdf:rest Nc995b0cd168744e2b2df5b64ded63ebf
75 N5380a84a6bb7421c9f18922095a98c4d schema:name doi
76 schema:value 10.1007/978-3-642-31464-3_10
77 rdf:type schema:PropertyValue
78 N5612a88b559b408d97c46c6cc1a2c408 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N5e88a80c6d714736a9af53759911667c schema:familyName Wyrzykowski
81 schema:givenName Roman
82 rdf:type schema:Person
83 N5ea60c0ce9734edf93619afe227a34c4 schema:name Springer Nature
84 rdf:type schema:Organisation
85 N79afb2a7c07c494f824aa2cc2c1377d6 rdf:first sg:person.011136377232.42
86 rdf:rest N801ad8bfd60d4d6ea958ce314368036a
87 N801ad8bfd60d4d6ea958ce314368036a rdf:first sg:person.01165636016.38
88 rdf:rest rdf:nil
89 N8dc1d6a5fc4c47a99b9ff592ec10a9a8 schema:familyName Karczewski
90 schema:givenName Konrad
91 rdf:type schema:Person
92 N9fe58842e0884524ac68284876156bf7 rdf:first Ndb357e374abb4f13a36201d38ef0cafb
93 rdf:rest rdf:nil
94 Nc995b0cd168744e2b2df5b64ded63ebf rdf:first Nf4dd6b4e52a244a4b07b57cb68378fdd
95 rdf:rest Nece6ebd8848a46279e0c11bc4264b57b
96 Ndb357e374abb4f13a36201d38ef0cafb schema:familyName Waśniewski
97 schema:givenName Jerzy
98 rdf:type schema:Person
99 Nece6ebd8848a46279e0c11bc4264b57b rdf:first N8dc1d6a5fc4c47a99b9ff592ec10a9a8
100 rdf:rest N9fe58842e0884524ac68284876156bf7
101 Nf4dd6b4e52a244a4b07b57cb68378fdd schema:familyName Dongarra
102 schema:givenName Jack
103 rdf:type schema:Person
104 Nfd45463502734cea94f351135fd01252 schema:isbn 978-3-642-31463-6
105 978-3-642-31464-3
106 schema:name Parallel Processing and Applied Mathematics
107 rdf:type schema:Book
108 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
109 schema:name Information and Computing Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
112 schema:name Computer Software
113 rdf:type schema:DefinedTerm
114 sg:person.011136377232.42 schema:affiliation grid-institutes:grid.8051.c
115 schema:familyName Neves
116 schema:givenName Samuel
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011136377232.42
118 rdf:type schema:Person
119 sg:person.01165636016.38 schema:affiliation grid-institutes:grid.8051.c
120 schema:familyName Araujo
121 schema:givenName Filipe
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165636016.38
123 rdf:type schema:Person
124 grid-institutes:grid.8051.c schema:alternateName CISUC, Dept. of Informatics Engineering, University of Coimbra, Portugal
125 schema:name CISUC, Dept. of Informatics Engineering, University of Coimbra, Portugal
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...