Cloud Monitoring: An Innovative Approach for the Prevention of Landslide Risks View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Bigarré Pascal , Verdel Thierry , Klein Emmanuelle , Gueniffey Yves

ABSTRACT

Early warning systems (EWS) applied to geohazards and landslides should rely increasingly on cutting edge multi-parameter monitoring systems. These aim to provide both the best insight in the physics and then reach the best time delay required by decision makers. In addition, monitoring geohazard on the long term is becoming an increasingly multi-stakeholder process, involving various interacting actors with different roles. Seamless access to dataset, easy-to-read advanced results and technical information of interest to be shared between numerous actors is becoming all the more important. Then, in the same manner as in the computing field, cloud monitoring technologies and solutions may pace rapidly the next generation of monitoring services. The paper intends to give a brief overview of this prospect, focusing on recent information technology breakthroughs and considerations on the cost benefit of such a network centric approach. The e.cenaris cloud monitoring data center developed by INERIS, France, is evocated along with further linked prospects related to the research undertaken by the authors. More... »

PAGES

665-670

Book

TITLE

Landslide Science and Practice

ISBN

978-3-642-31444-5
978-3-642-31445-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-31445-2_87

DOI

http://dx.doi.org/10.1007/978-3-642-31445-2_87

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029565716


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00c9cole Nationale Sup\u00e9rieure des Mines de Nancy", 
          "id": "https://www.grid.ac/institutes/grid.473477.4", 
          "name": [
            "National Institute of Environment and Industrial Risks, School of Mines of Nancy, Nancy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pascal", 
        "givenName": "Bigarr\u00e9", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Nationale Sup\u00e9rieure des Mines de Nancy", 
          "id": "https://www.grid.ac/institutes/grid.473477.4", 
          "name": [
            "Laboratory of Environment, Geomechanics and Structures, School of Mines of Nancy, Nancy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thierry", 
        "givenName": "Verdel", 
        "id": "sg:person.015072764043.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015072764043.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Nationale Sup\u00e9rieure des Mines de Nancy", 
          "id": "https://www.grid.ac/institutes/grid.473477.4", 
          "name": [
            "National Institute of Environment and Industrial Risks, School of Mines of Nancy, Nancy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Emmanuelle", 
        "givenName": "Klein", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Nationale Sup\u00e9rieure des Mines de Nancy", 
          "id": "https://www.grid.ac/institutes/grid.473477.4", 
          "name": [
            "Laboratory of Environment, Geomechanics and Structures, School of Mines of Nancy, Nancy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yves", 
        "givenName": "Gueniffey", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.rse.2009.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014282857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/nhess-6-179-2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044541890"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "Early warning systems (EWS) applied to geohazards and landslides should rely increasingly on cutting edge multi-parameter monitoring systems. These aim to provide both the best insight in the physics and then reach the best time delay required by decision makers. In addition, monitoring geohazard on the long term is becoming an increasingly multi-stakeholder process, involving various interacting actors with different roles. Seamless access to dataset, easy-to-read advanced results and technical information of interest to be shared between numerous actors is becoming all the more important. Then, in the same manner as in the computing field, cloud monitoring technologies and solutions may pace rapidly the next generation of monitoring services. The paper intends to give a brief overview of this prospect, focusing on recent information technology breakthroughs and considerations on the cost benefit of such a network centric approach. The e.cenaris cloud monitoring data center developed by INERIS, France, is evocated along with further linked prospects related to the research undertaken by the authors.", 
    "editor": [
      {
        "familyName": "Margottini", 
        "givenName": "Claudio", 
        "type": "Person"
      }, 
      {
        "familyName": "Canuti", 
        "givenName": "Paolo", 
        "type": "Person"
      }, 
      {
        "familyName": "Sassa", 
        "givenName": "Kyoji", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-31445-2_87", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-31444-5", 
        "978-3-642-31445-2"
      ], 
      "name": "Landslide Science and Practice", 
      "type": "Book"
    }, 
    "name": "Cloud Monitoring: An Innovative Approach for the Prevention of Landslide Risks", 
    "pagination": "665-670", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-31445-2_87"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8cd89feabc9fc29ae2d0404459d700fd7f04ffe39f5210bb466e30b1e0ca8d36"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029565716"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-31445-2_87", 
      "https://app.dimensions.ai/details/publication/pub.1029565716"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000559.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-31445-2_87"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31445-2_87'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31445-2_87'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31445-2_87'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31445-2_87'


 

This table displays all metadata directly associated to this object as RDF triples.

100 TRIPLES      23 PREDICATES      29 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-31445-2_87 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Ncc05f62c3fbc426a82d8fb906b3149dc
4 schema:citation https://doi.org/10.1016/j.rse.2009.08.014
5 https://doi.org/10.5194/nhess-6-179-2006
6 schema:datePublished 2013
7 schema:datePublishedReg 2013-01-01
8 schema:description Early warning systems (EWS) applied to geohazards and landslides should rely increasingly on cutting edge multi-parameter monitoring systems. These aim to provide both the best insight in the physics and then reach the best time delay required by decision makers. In addition, monitoring geohazard on the long term is becoming an increasingly multi-stakeholder process, involving various interacting actors with different roles. Seamless access to dataset, easy-to-read advanced results and technical information of interest to be shared between numerous actors is becoming all the more important. Then, in the same manner as in the computing field, cloud monitoring technologies and solutions may pace rapidly the next generation of monitoring services. The paper intends to give a brief overview of this prospect, focusing on recent information technology breakthroughs and considerations on the cost benefit of such a network centric approach. The e.cenaris cloud monitoring data center developed by INERIS, France, is evocated along with further linked prospects related to the research undertaken by the authors.
9 schema:editor Nce67942050c1478db99e852cb9ae837f
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N656391e2b7c348c9acdc3f143e69024a
14 schema:name Cloud Monitoring: An Innovative Approach for the Prevention of Landslide Risks
15 schema:pagination 665-670
16 schema:productId N6b66842f4ee34269b7cdb2513ce384fe
17 Nb7e5125fb94748748e55acf16cd6482d
18 Nef7a1c231ece45958115ab9198710896
19 schema:publisher N44c635c0eb1442349ceace91b07c1396
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029565716
21 https://doi.org/10.1007/978-3-642-31445-2_87
22 schema:sdDatePublished 2019-04-15T20:39
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher Nd0864df375e8486199efb6a97bd7acc9
25 schema:url http://link.springer.com/10.1007/978-3-642-31445-2_87
26 sgo:license sg:explorer/license/
27 sgo:sdDataset chapters
28 rdf:type schema:Chapter
29 N0bf386c7996d4e22a9773d7f7d337063 rdf:first Nb5b156d1dff34a86ace2a4d82bc9ddce
30 rdf:rest N7e8bcb15612c46a79f40f341b8842648
31 N1f43312ffe584bc2bad8b8928c544720 schema:familyName Sassa
32 schema:givenName Kyoji
33 rdf:type schema:Person
34 N21059a0615ee4c28a9a5a1a6303b645f schema:affiliation https://www.grid.ac/institutes/grid.473477.4
35 schema:familyName Yves
36 schema:givenName Gueniffey
37 rdf:type schema:Person
38 N21a031c296bb4afe9975976df63e0c82 rdf:first sg:person.015072764043.93
39 rdf:rest Nda62901bd50446e7a17fa144fe08c2d7
40 N44c635c0eb1442349ceace91b07c1396 schema:location Berlin, Heidelberg
41 schema:name Springer Berlin Heidelberg
42 rdf:type schema:Organisation
43 N4ca2d2e01f944529be4838b38002ebea schema:affiliation https://www.grid.ac/institutes/grid.473477.4
44 schema:familyName Pascal
45 schema:givenName Bigarré
46 rdf:type schema:Person
47 N559291e013be495aa07307cbb462d9af rdf:first N21059a0615ee4c28a9a5a1a6303b645f
48 rdf:rest rdf:nil
49 N656391e2b7c348c9acdc3f143e69024a schema:isbn 978-3-642-31444-5
50 978-3-642-31445-2
51 schema:name Landslide Science and Practice
52 rdf:type schema:Book
53 N6b66842f4ee34269b7cdb2513ce384fe schema:name dimensions_id
54 schema:value pub.1029565716
55 rdf:type schema:PropertyValue
56 N7e8bcb15612c46a79f40f341b8842648 rdf:first N1f43312ffe584bc2bad8b8928c544720
57 rdf:rest rdf:nil
58 Nae895d9e0fee46ca95b6b7bc8424f742 schema:familyName Margottini
59 schema:givenName Claudio
60 rdf:type schema:Person
61 Naf233b9d0c8d44e289d473d3fa4d3355 schema:affiliation https://www.grid.ac/institutes/grid.473477.4
62 schema:familyName Emmanuelle
63 schema:givenName Klein
64 rdf:type schema:Person
65 Nb5b156d1dff34a86ace2a4d82bc9ddce schema:familyName Canuti
66 schema:givenName Paolo
67 rdf:type schema:Person
68 Nb7e5125fb94748748e55acf16cd6482d schema:name readcube_id
69 schema:value 8cd89feabc9fc29ae2d0404459d700fd7f04ffe39f5210bb466e30b1e0ca8d36
70 rdf:type schema:PropertyValue
71 Ncc05f62c3fbc426a82d8fb906b3149dc rdf:first N4ca2d2e01f944529be4838b38002ebea
72 rdf:rest N21a031c296bb4afe9975976df63e0c82
73 Nce67942050c1478db99e852cb9ae837f rdf:first Nae895d9e0fee46ca95b6b7bc8424f742
74 rdf:rest N0bf386c7996d4e22a9773d7f7d337063
75 Nd0864df375e8486199efb6a97bd7acc9 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Nda62901bd50446e7a17fa144fe08c2d7 rdf:first Naf233b9d0c8d44e289d473d3fa4d3355
78 rdf:rest N559291e013be495aa07307cbb462d9af
79 Nef7a1c231ece45958115ab9198710896 schema:name doi
80 schema:value 10.1007/978-3-642-31445-2_87
81 rdf:type schema:PropertyValue
82 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
83 schema:name Information and Computing Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
86 schema:name Information Systems
87 rdf:type schema:DefinedTerm
88 sg:person.015072764043.93 schema:affiliation https://www.grid.ac/institutes/grid.473477.4
89 schema:familyName Thierry
90 schema:givenName Verdel
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015072764043.93
92 rdf:type schema:Person
93 https://doi.org/10.1016/j.rse.2009.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014282857
94 rdf:type schema:CreativeWork
95 https://doi.org/10.5194/nhess-6-179-2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044541890
96 rdf:type schema:CreativeWork
97 https://www.grid.ac/institutes/grid.473477.4 schema:alternateName École Nationale Supérieure des Mines de Nancy
98 schema:name Laboratory of Environment, Geomechanics and Structures, School of Mines of Nancy, Nancy, France
99 National Institute of Environment and Industrial Risks, School of Mines of Nancy, Nancy, France
100 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...