Artificial Immune System for Solving Dynamic Constrained Optimization Problems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Victoria S. Aragón , Susana C. Esquivel , Carlos A. Coello

ABSTRACT

In this chapter, we analyze the behavior of an adaptive immune system when solving dynamic constrained optimization problems (DCOPs). Our proposed approach is called Dynamic Constrained T-Cell (DCTC) and it is an adaptation of an existing algorithm, which was originally designed to solve static constrained problems. Here, this approach is extended to deal with problems which change over time and whose solutions are subject to constraints. Our proposed DCTC is validated with eleven dynamic constrained problems which involve the following scenarios: dynamic objective function with static constraints, static objective function with dynamic constraints, and dynamic objective function with dynamic constraints. The performance of the proposed approach is compared with respect to that of another algorithm that was originally designed to solve static constrained problems (SMES) and which is adapted here to solve DCOPs. Besides, the performance of our proposed DCTC is compared with respect to those of two approaches which have been used to solve dynamic constrained optimization problems (RIGA and dRepairRIGA). Some statistical analysis is performed in order to get some insights into the effect that the dynamic features of the problems have on the behavior of the proposed algorithm. More... »

PAGES

225-263

References to SciGraph publications

Book

TITLE

Metaheuristics for Dynamic Optimization

ISBN

978-3-642-30664-8
978-3-642-30665-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-30665-5_11

DOI

http://dx.doi.org/10.1007/978-3-642-30665-5_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038294610


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of San Luis", 
          "id": "https://www.grid.ac/institutes/grid.412115.2", 
          "name": [
            "Laboratorio de Investigaci\u00f3n y Desarrollo en Inteligencia Computacional (LIDIC), Universidad Nacional de San Luis, Ej\u00e9rcito de los Andes 950, 5700\u00a0San Luis, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arag\u00f3n", 
        "givenName": "Victoria S.", 
        "id": "sg:person.011524757333.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011524757333.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of San Luis", 
          "id": "https://www.grid.ac/institutes/grid.412115.2", 
          "name": [
            "Laboratorio de Investigaci\u00f3n y Desarrollo en Inteligencia Computacional (LIDIC), Universidad Nacional de San Luis, Ej\u00e9rcito de los Andes 950, 5700\u00a0San Luis, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Esquivel", 
        "givenName": "Susana C.", 
        "id": "sg:person.010424142165.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010424142165.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Polit\u00e9cnico Nacional", 
          "id": "https://www.grid.ac/institutes/grid.418275.d", 
          "name": [
            "Computer Science Department, CINVESTAV-IPN (Evolutionary Computation Group), Av. IPN No. 2508, Col. San Pedro Zacatenco, M\u00e9xico D.F., 07300, M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coello", 
        "givenName": "Carlos A.", 
        "id": "sg:person.012160505340.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160505340.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1160633.1160898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000741037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tre.2004.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009285847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.2904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014795593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.2904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014795593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-12239-2_57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016363639", 
          "https://doi.org/10.1007/978-3-642-12239-2_57"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-12239-2_57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016363639", 
          "https://doi.org/10.1007/978-3-642-12239-2_57"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45578-7_56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020129767", 
          "https://doi.org/10.1007/3-540-45578-7_56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-009-0420-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021086389", 
          "https://doi.org/10.1007/s00500-009-0420-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-009-0420-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021086389", 
          "https://doi.org/10.1007/s00500-009-0420-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-009-0420-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021086389", 
          "https://doi.org/10.1007/s00500-009-0420-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.iy.12.040194.005015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024846748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-78761-7_65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025041441", 
          "https://doi.org/10.1007/978-3-540-78761-7_65"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-78761-7_65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025041441", 
          "https://doi.org/10.1007/978-3-540-78761-7_65"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1082473.1082632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028180639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-70928-2_60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028308981", 
          "https://doi.org/10.1007/978-3-540-70928-2_60"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0105-2896.2006.00350.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029466574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0105-2896.2006.00350.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029466574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-20525-5_34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032875544", 
          "https://doi.org/10.1007/978-3-642-20525-5_34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-20525-5_34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032875544", 
          "https://doi.org/10.1007/978-3-642-20525-5_34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2004.836819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.169.3950.1042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062500690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4114/ia.v12i40.983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072250430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4114/ia.v14i46.1500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072250466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tai.1993.633935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086281406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnc.2008.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093259626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/nabic.2009.5393482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093445572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2009.4983135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093514674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2005.1555049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094119030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2005.1555049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094119030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2009.4983011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094743511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/nabic.2010.5716285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094963821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/nabic.2010.5716271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094984902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420065466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095904769"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "In this chapter, we analyze the behavior of an adaptive immune system when solving dynamic constrained optimization problems (DCOPs). Our proposed approach is called Dynamic Constrained T-Cell (DCTC) and it is an adaptation of an existing algorithm, which was originally designed to solve static constrained problems. Here, this approach is extended to deal with problems which change over time and whose solutions are subject to constraints. Our proposed DCTC is validated with eleven dynamic constrained problems which involve the following scenarios: dynamic objective function with static constraints, static objective function with dynamic constraints, and dynamic objective function with dynamic constraints. The performance of the proposed approach is compared with respect to that of another algorithm that was originally designed to solve static constrained problems (SMES) and which is adapted here to solve DCOPs. Besides, the performance of our proposed DCTC is compared with respect to those of two approaches which have been used to solve dynamic constrained optimization problems (RIGA and dRepairRIGA). Some statistical analysis is performed in order to get some insights into the effect that the dynamic features of the problems have on the behavior of the proposed algorithm.", 
    "editor": [
      {
        "familyName": "Alba", 
        "givenName": "Enrique", 
        "type": "Person"
      }, 
      {
        "familyName": "Nakib", 
        "givenName": "Amir", 
        "type": "Person"
      }, 
      {
        "familyName": "Siarry", 
        "givenName": "Patrick", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-30665-5_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-30664-8", 
        "978-3-642-30665-5"
      ], 
      "name": "Metaheuristics for Dynamic Optimization", 
      "type": "Book"
    }, 
    "name": "Artificial Immune System for Solving Dynamic Constrained Optimization Problems", 
    "pagination": "225-263", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-30665-5_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b66c14b4d8f18d28cac1b9faf9c0ebbb4c317a0b60ab5d769660e1c1f11d0463"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038294610"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-30665-5_11", 
      "https://app.dimensions.ai/details/publication/pub.1038294610"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000267.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-30665-5_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-30665-5_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-30665-5_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-30665-5_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-30665-5_11'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      23 PREDICATES      52 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-30665-5_11 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N517fe6fe6f1b4790aaae23c4b59ff4e6
4 schema:citation sg:pub.10.1007/3-540-45578-7_56
5 sg:pub.10.1007/978-3-540-70928-2_60
6 sg:pub.10.1007/978-3-540-78761-7_65
7 sg:pub.10.1007/978-3-642-12239-2_57
8 sg:pub.10.1007/978-3-642-20525-5_34
9 sg:pub.10.1007/s00500-009-0420-6
10 https://doi.org/10.1002/nme.2904
11 https://doi.org/10.1016/j.tre.2004.03.003
12 https://doi.org/10.1109/cec.2005.1555049
13 https://doi.org/10.1109/cec.2009.4983011
14 https://doi.org/10.1109/cec.2009.4983135
15 https://doi.org/10.1109/icnc.2008.110
16 https://doi.org/10.1109/nabic.2009.5393482
17 https://doi.org/10.1109/nabic.2010.5716271
18 https://doi.org/10.1109/nabic.2010.5716285
19 https://doi.org/10.1109/tai.1993.633935
20 https://doi.org/10.1109/tevc.2004.836819
21 https://doi.org/10.1111/j.0105-2896.2006.00350.x
22 https://doi.org/10.1126/science.169.3950.1042
23 https://doi.org/10.1145/1082473.1082632
24 https://doi.org/10.1145/1160633.1160898
25 https://doi.org/10.1146/annurev.iy.12.040194.005015
26 https://doi.org/10.1201/9781420065466
27 https://doi.org/10.4114/ia.v12i40.983
28 https://doi.org/10.4114/ia.v14i46.1500
29 schema:datePublished 2013
30 schema:datePublishedReg 2013-01-01
31 schema:description In this chapter, we analyze the behavior of an adaptive immune system when solving dynamic constrained optimization problems (DCOPs). Our proposed approach is called Dynamic Constrained T-Cell (DCTC) and it is an adaptation of an existing algorithm, which was originally designed to solve static constrained problems. Here, this approach is extended to deal with problems which change over time and whose solutions are subject to constraints. Our proposed DCTC is validated with eleven dynamic constrained problems which involve the following scenarios: dynamic objective function with static constraints, static objective function with dynamic constraints, and dynamic objective function with dynamic constraints. The performance of the proposed approach is compared with respect to that of another algorithm that was originally designed to solve static constrained problems (SMES) and which is adapted here to solve DCOPs. Besides, the performance of our proposed DCTC is compared with respect to those of two approaches which have been used to solve dynamic constrained optimization problems (RIGA and dRepairRIGA). Some statistical analysis is performed in order to get some insights into the effect that the dynamic features of the problems have on the behavior of the proposed algorithm.
32 schema:editor N04454929f7fc4ccbbad57d4d6a4a9461
33 schema:genre chapter
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf Ne65e92ad0b754d928b222c3bc04b3b96
37 schema:name Artificial Immune System for Solving Dynamic Constrained Optimization Problems
38 schema:pagination 225-263
39 schema:productId N0c61c896ab8540468a77a3bc4cbb4a1e
40 N4c62afe6d26f4ce8b412e746583ac128
41 N68c14a8501424127a904c6b9a62721e9
42 schema:publisher N0bc8c566d6da4fbaaabad352e8c7cdee
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038294610
44 https://doi.org/10.1007/978-3-642-30665-5_11
45 schema:sdDatePublished 2019-04-16T00:50
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N331fdd27e93d46dfbf623f42f4b6e313
48 schema:url http://link.springer.com/10.1007/978-3-642-30665-5_11
49 sgo:license sg:explorer/license/
50 sgo:sdDataset chapters
51 rdf:type schema:Chapter
52 N01fce5b6ad6d4ae89143160a28998660 schema:familyName Siarry
53 schema:givenName Patrick
54 rdf:type schema:Person
55 N04454929f7fc4ccbbad57d4d6a4a9461 rdf:first N9a9c7973432c489abc592d2f86a14881
56 rdf:rest Nfa1a89a044d048d293f9722bbbb90075
57 N0bc8c566d6da4fbaaabad352e8c7cdee schema:location Berlin, Heidelberg
58 schema:name Springer Berlin Heidelberg
59 rdf:type schema:Organisation
60 N0c61c896ab8540468a77a3bc4cbb4a1e schema:name readcube_id
61 schema:value b66c14b4d8f18d28cac1b9faf9c0ebbb4c317a0b60ab5d769660e1c1f11d0463
62 rdf:type schema:PropertyValue
63 N270a8710325a42848f0be461c6456a06 rdf:first sg:person.012160505340.13
64 rdf:rest rdf:nil
65 N331fdd27e93d46dfbf623f42f4b6e313 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N4c62afe6d26f4ce8b412e746583ac128 schema:name doi
68 schema:value 10.1007/978-3-642-30665-5_11
69 rdf:type schema:PropertyValue
70 N517fe6fe6f1b4790aaae23c4b59ff4e6 rdf:first sg:person.011524757333.82
71 rdf:rest N90cf0e3bd17a4a49ae0102f7f86b24af
72 N68c14a8501424127a904c6b9a62721e9 schema:name dimensions_id
73 schema:value pub.1038294610
74 rdf:type schema:PropertyValue
75 N90cf0e3bd17a4a49ae0102f7f86b24af rdf:first sg:person.010424142165.72
76 rdf:rest N270a8710325a42848f0be461c6456a06
77 N9a9c7973432c489abc592d2f86a14881 schema:familyName Alba
78 schema:givenName Enrique
79 rdf:type schema:Person
80 Nca510128883b4799aa840420896ffb2c rdf:first N01fce5b6ad6d4ae89143160a28998660
81 rdf:rest rdf:nil
82 Ncc4f0beefd454ca396eb4ad9553dca9a schema:familyName Nakib
83 schema:givenName Amir
84 rdf:type schema:Person
85 Ne65e92ad0b754d928b222c3bc04b3b96 schema:isbn 978-3-642-30664-8
86 978-3-642-30665-5
87 schema:name Metaheuristics for Dynamic Optimization
88 rdf:type schema:Book
89 Nfa1a89a044d048d293f9722bbbb90075 rdf:first Ncc4f0beefd454ca396eb4ad9553dca9a
90 rdf:rest Nca510128883b4799aa840420896ffb2c
91 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
92 schema:name Mathematical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
95 schema:name Numerical and Computational Mathematics
96 rdf:type schema:DefinedTerm
97 sg:person.010424142165.72 schema:affiliation https://www.grid.ac/institutes/grid.412115.2
98 schema:familyName Esquivel
99 schema:givenName Susana C.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010424142165.72
101 rdf:type schema:Person
102 sg:person.011524757333.82 schema:affiliation https://www.grid.ac/institutes/grid.412115.2
103 schema:familyName Aragón
104 schema:givenName Victoria S.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011524757333.82
106 rdf:type schema:Person
107 sg:person.012160505340.13 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
108 schema:familyName Coello
109 schema:givenName Carlos A.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160505340.13
111 rdf:type schema:Person
112 sg:pub.10.1007/3-540-45578-7_56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020129767
113 https://doi.org/10.1007/3-540-45578-7_56
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/978-3-540-70928-2_60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028308981
116 https://doi.org/10.1007/978-3-540-70928-2_60
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/978-3-540-78761-7_65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025041441
119 https://doi.org/10.1007/978-3-540-78761-7_65
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/978-3-642-12239-2_57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016363639
122 https://doi.org/10.1007/978-3-642-12239-2_57
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/978-3-642-20525-5_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032875544
125 https://doi.org/10.1007/978-3-642-20525-5_34
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s00500-009-0420-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021086389
128 https://doi.org/10.1007/s00500-009-0420-6
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/nme.2904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014795593
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.tre.2004.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009285847
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/cec.2005.1555049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094119030
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/cec.2009.4983011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094743511
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/cec.2009.4983135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093514674
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/icnc.2008.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093259626
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/nabic.2009.5393482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093445572
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/nabic.2010.5716271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094984902
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/nabic.2010.5716285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094963821
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tai.1993.633935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086281406
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/tevc.2004.836819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604648
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1111/j.0105-2896.2006.00350.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029466574
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1126/science.169.3950.1042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062500690
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1145/1082473.1082632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028180639
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1145/1160633.1160898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000741037
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1146/annurev.iy.12.040194.005015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024846748
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1201/9781420065466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095904769
163 rdf:type schema:CreativeWork
164 https://doi.org/10.4114/ia.v12i40.983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072250430
165 rdf:type schema:CreativeWork
166 https://doi.org/10.4114/ia.v14i46.1500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072250466
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.412115.2 schema:alternateName National University of San Luis
169 schema:name Laboratorio de Investigación y Desarrollo en Inteligencia Computacional (LIDIC), Universidad Nacional de San Luis, Ejército de los Andes 950, 5700 San Luis, Argentina
170 rdf:type schema:Organization
171 https://www.grid.ac/institutes/grid.418275.d schema:alternateName Instituto Politécnico Nacional
172 schema:name Computer Science Department, CINVESTAV-IPN (Evolutionary Computation Group), Av. IPN No. 2508, Col. San Pedro Zacatenco, México D.F., 07300, México
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...