A Fuzzy Condition-Sensitive Hierarchical Algorithm for Approximate Template Matching in Dynamic Image Sequence View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Rajshree Mandal , Anisha Halder , Amit Konar , Atulya K Nagar

ABSTRACT

Given a template of \(m \times n\) and an image of \(M \times N\) pixels, the latter being partitioned into blocks of \(m \times n\) pixels with interleaving, template matching aims at determining the best matched target block in the image with respect to the template. This chapter develops a hierarchical algorithm of template matching using decision trees. Nodes in the tree, here, represent the features used for matching, while the arcs denote the conditions on the features to separate relatively better candidate solutions from the rest. The proposed hierarchical matching scheme tests the feasibility of each block by checking the satisfiability of the conditions labeled along the arcs. The block that satisfies the condition at one level is transferred to the next level, and discarded from the system otherwise. Thus blocks that traverse the largest depth are better candidate solutions. Among these solutions, the one with the smallest Euclidean distance with the template is declared as the winner. The work differs with respect to classical hierarchical template matching by two counts. First, the conditions here are induced with fuzzy measurements of the features. Fuzzy encoding eliminates small changes in imaging features due to variations in lighting conditions and head movement. Second, information gain is used to determine the order of the features to be examined by the tree for decision making. The time-complexity of the proposed algorithm is of the order of \(MN/mn\). The algorithm has successfully been implemented for template matching of human eyes in facial images carrying different emotions, and the classification accuracy is as high as 94 %. More... »

PAGES

155-172

Book

TITLE

Computational Intelligence in Image Processing

ISBN

978-3-642-30620-4
978-3-642-30621-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-30621-1_8

DOI

http://dx.doi.org/10.1007/978-3-642-30621-1_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037301244


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Electronics and Tele-Communication Engineering, Jadavpur University, Kolkata-32\u00a0Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mandal", 
        "givenName": "Rajshree", 
        "id": "sg:person.015222562611.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015222562611.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Electronics and Tele-Communication Engineering, Jadavpur University, Kolkata-32\u00a0Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Halder", 
        "givenName": "Anisha", 
        "id": "sg:person.07634650155.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07634650155.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Electronics and Tele-Communication Engineering, Jadavpur University, Kolkata-32\u00a0Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konar", 
        "givenName": "Amit", 
        "id": "sg:person.01337053064.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Liverpool Hope University", 
          "id": "https://www.grid.ac/institutes/grid.146189.3", 
          "name": [
            "Department of Math and Computer Science, Liverpool Hope University, Liverpool, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagar", 
        "givenName": "Atulya K", 
        "id": "sg:person.07473414214.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07473414214.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0952-1976(00)00058-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053395184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2007.1062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2009.204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmca.2009.2014645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061795489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icosp.2008.4697240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093436747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iscsct.2008.369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093613881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sice.2007.4421007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093768351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2007.4408975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094041093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2008.4712177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094107048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2007.4379333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094146221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/btas.2007.4401958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094190447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wcse.2009.740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094305870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icemi.2009.5274642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094325103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2008.4761165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094369729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccse.2009.5228224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094676972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cisp.2008.270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095246339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icise.2009.579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095298610"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "Given a template of \\(m \\times n\\) and an image of \\(M \\times N\\) pixels, the latter being partitioned into blocks of \\(m \\times n\\) pixels with interleaving, template matching aims at determining the best matched target block in the image with respect to the template. This chapter develops a hierarchical algorithm of template matching using decision trees. Nodes in the tree, here, represent the features used for matching, while the arcs denote the conditions on the features to separate relatively better candidate solutions from the rest. The proposed hierarchical matching scheme tests the feasibility of each block by checking the satisfiability of the conditions labeled along the arcs. The block that satisfies the condition at one level is transferred to the next level, and discarded from the system otherwise. Thus blocks that traverse the largest depth are better candidate solutions. Among these solutions, the one with the smallest Euclidean distance with the template is declared as the winner. The work differs with respect to classical hierarchical template matching by two counts. First, the conditions here are induced with fuzzy measurements of the features. Fuzzy encoding eliminates small changes in imaging features due to variations in lighting conditions and head movement. Second, information gain is used to determine the order of the features to be examined by the tree for decision making. The time-complexity of the proposed algorithm is of the order of \\(MN/mn\\). The algorithm has successfully been implemented for template matching of human eyes in facial images carrying different emotions, and the classification accuracy is as high as 94\u00a0%.", 
    "editor": [
      {
        "familyName": "Chatterjee", 
        "givenName": "Amitava", 
        "type": "Person"
      }, 
      {
        "familyName": "Siarry", 
        "givenName": "Patrick", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-30621-1_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-30620-4", 
        "978-3-642-30621-1"
      ], 
      "name": "Computational Intelligence in Image Processing", 
      "type": "Book"
    }, 
    "name": "A Fuzzy Condition-Sensitive Hierarchical Algorithm for Approximate Template Matching in Dynamic Image Sequence", 
    "pagination": "155-172", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-30621-1_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b1b0d304bf31a580c305f0dce8e19d48f50c766a52d0c79b34db0daac90aa264"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037301244"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-30621-1_8", 
      "https://app.dimensions.ai/details/publication/pub.1037301244"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000266.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-30621-1_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-30621-1_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-30621-1_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-30621-1_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-30621-1_8'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      23 PREDICATES      44 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-30621-1_8 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nc38033542eb64cc8bcdd0680912987a7
4 schema:citation https://doi.org/10.1016/s0952-1976(00)00058-0
5 https://doi.org/10.1109/btas.2007.4401958
6 https://doi.org/10.1109/cisp.2008.270
7 https://doi.org/10.1109/iccse.2009.5228224
8 https://doi.org/10.1109/iccv.2007.4408975
9 https://doi.org/10.1109/icemi.2009.5274642
10 https://doi.org/10.1109/icip.2007.4379333
11 https://doi.org/10.1109/icip.2008.4712177
12 https://doi.org/10.1109/icise.2009.579
13 https://doi.org/10.1109/icosp.2008.4697240
14 https://doi.org/10.1109/icpr.2008.4761165
15 https://doi.org/10.1109/iscsct.2008.369
16 https://doi.org/10.1109/sice.2007.4421007
17 https://doi.org/10.1109/tpami.2007.1062
18 https://doi.org/10.1109/tpami.2009.204
19 https://doi.org/10.1109/tsmca.2009.2014645
20 https://doi.org/10.1109/wcse.2009.740
21 schema:datePublished 2013
22 schema:datePublishedReg 2013-01-01
23 schema:description Given a template of \(m \times n\) and an image of \(M \times N\) pixels, the latter being partitioned into blocks of \(m \times n\) pixels with interleaving, template matching aims at determining the best matched target block in the image with respect to the template. This chapter develops a hierarchical algorithm of template matching using decision trees. Nodes in the tree, here, represent the features used for matching, while the arcs denote the conditions on the features to separate relatively better candidate solutions from the rest. The proposed hierarchical matching scheme tests the feasibility of each block by checking the satisfiability of the conditions labeled along the arcs. The block that satisfies the condition at one level is transferred to the next level, and discarded from the system otherwise. Thus blocks that traverse the largest depth are better candidate solutions. Among these solutions, the one with the smallest Euclidean distance with the template is declared as the winner. The work differs with respect to classical hierarchical template matching by two counts. First, the conditions here are induced with fuzzy measurements of the features. Fuzzy encoding eliminates small changes in imaging features due to variations in lighting conditions and head movement. Second, information gain is used to determine the order of the features to be examined by the tree for decision making. The time-complexity of the proposed algorithm is of the order of \(MN/mn\). The algorithm has successfully been implemented for template matching of human eyes in facial images carrying different emotions, and the classification accuracy is as high as 94 %.
24 schema:editor N84cc5354a4e84135a5484d8b5002dafc
25 schema:genre chapter
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf Nd296c494721f44a3a9d46dd12d05931b
29 schema:name A Fuzzy Condition-Sensitive Hierarchical Algorithm for Approximate Template Matching in Dynamic Image Sequence
30 schema:pagination 155-172
31 schema:productId N579ff2f3b0bb4417803e5798df3cccdf
32 N5c8c0b515fc54299b0680ff8f2aa2d38
33 Ne04d329709f74d6c9cc1a8a3cc69d16c
34 schema:publisher Nb57893a4db3346e58ab92f95fe2441f2
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037301244
36 https://doi.org/10.1007/978-3-642-30621-1_8
37 schema:sdDatePublished 2019-04-15T21:03
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N20b524d68de74dcebe083b20a11ae2be
40 schema:url http://link.springer.com/10.1007/978-3-642-30621-1_8
41 sgo:license sg:explorer/license/
42 sgo:sdDataset chapters
43 rdf:type schema:Chapter
44 N0abff9ed0b5c47aeae1b0a24727a3684 rdf:first sg:person.07473414214.77
45 rdf:rest rdf:nil
46 N17a45e99d8d244dc87925fbdf478f309 schema:familyName Siarry
47 schema:givenName Patrick
48 rdf:type schema:Person
49 N1cfb30e0ed604870a5e30a89da52d4b2 rdf:first sg:person.01337053064.29
50 rdf:rest N0abff9ed0b5c47aeae1b0a24727a3684
51 N20b524d68de74dcebe083b20a11ae2be schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N2a459064b36e4e74bfdfe90f84da288f rdf:first sg:person.07634650155.30
54 rdf:rest N1cfb30e0ed604870a5e30a89da52d4b2
55 N579ff2f3b0bb4417803e5798df3cccdf schema:name dimensions_id
56 schema:value pub.1037301244
57 rdf:type schema:PropertyValue
58 N5c8c0b515fc54299b0680ff8f2aa2d38 schema:name doi
59 schema:value 10.1007/978-3-642-30621-1_8
60 rdf:type schema:PropertyValue
61 N84cc5354a4e84135a5484d8b5002dafc rdf:first Nadfbce3561af4869888856a81f05dff5
62 rdf:rest Nb6746286ec8e4766ba8af6fd63deb26f
63 Nadfbce3561af4869888856a81f05dff5 schema:familyName Chatterjee
64 schema:givenName Amitava
65 rdf:type schema:Person
66 Nb57893a4db3346e58ab92f95fe2441f2 schema:location Berlin, Heidelberg
67 schema:name Springer Berlin Heidelberg
68 rdf:type schema:Organisation
69 Nb6746286ec8e4766ba8af6fd63deb26f rdf:first N17a45e99d8d244dc87925fbdf478f309
70 rdf:rest rdf:nil
71 Nc38033542eb64cc8bcdd0680912987a7 rdf:first sg:person.015222562611.63
72 rdf:rest N2a459064b36e4e74bfdfe90f84da288f
73 Nd296c494721f44a3a9d46dd12d05931b schema:isbn 978-3-642-30620-4
74 978-3-642-30621-1
75 schema:name Computational Intelligence in Image Processing
76 rdf:type schema:Book
77 Ne04d329709f74d6c9cc1a8a3cc69d16c schema:name readcube_id
78 schema:value b1b0d304bf31a580c305f0dce8e19d48f50c766a52d0c79b34db0daac90aa264
79 rdf:type schema:PropertyValue
80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information and Computing Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
84 schema:name Artificial Intelligence and Image Processing
85 rdf:type schema:DefinedTerm
86 sg:person.01337053064.29 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
87 schema:familyName Konar
88 schema:givenName Amit
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29
90 rdf:type schema:Person
91 sg:person.015222562611.63 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
92 schema:familyName Mandal
93 schema:givenName Rajshree
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015222562611.63
95 rdf:type schema:Person
96 sg:person.07473414214.77 schema:affiliation https://www.grid.ac/institutes/grid.146189.3
97 schema:familyName Nagar
98 schema:givenName Atulya K
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07473414214.77
100 rdf:type schema:Person
101 sg:person.07634650155.30 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
102 schema:familyName Halder
103 schema:givenName Anisha
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07634650155.30
105 rdf:type schema:Person
106 https://doi.org/10.1016/s0952-1976(00)00058-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053395184
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/btas.2007.4401958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094190447
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/cisp.2008.270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095246339
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/iccse.2009.5228224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094676972
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/iccv.2007.4408975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094041093
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/icemi.2009.5274642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094325103
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/icip.2007.4379333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094146221
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/icip.2008.4712177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094107048
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/icise.2009.579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095298610
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/icosp.2008.4697240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093436747
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/icpr.2008.4761165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094369729
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/iscsct.2008.369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093613881
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/sice.2007.4421007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093768351
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/tpami.2007.1062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743194
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/tpami.2009.204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743770
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/tsmca.2009.2014645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061795489
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/wcse.2009.740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094305870
139 rdf:type schema:CreativeWork
140 https://www.grid.ac/institutes/grid.146189.3 schema:alternateName Liverpool Hope University
141 schema:name Department of Math and Computer Science, Liverpool Hope University, Liverpool, UK
142 rdf:type schema:Organization
143 https://www.grid.ac/institutes/grid.216499.1 schema:alternateName Jadavpur University
144 schema:name Department of Electronics and Tele-Communication Engineering, Jadavpur University, Kolkata-32 Kolkata, India
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...