Visual Analytics: Towards Intelligent Interactive Internet and Security Solutions View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2012

AUTHORS

James Davey , Florian Mansmann , Jörn Kohlhammer , Daniel Keim

ABSTRACT

In the Future Internet, Big Data can not only be found in the amount of traffic, logs or alerts of the network infrastructure, but also on the content side. While the term Big Data refers to the increase in available data, this implicitly means that we must deal with problems at a larger scale and thus hints at scalability issues in the analysis of such data sets. Visual Analytics is an enabling technology, that offers new ways of extracting information from Big Data through intelligent, interactive internet and security solutions. It derives its effectiveness both from scalable analysis algorithms, that allow processing of large data sets, and from scalable visualizations. These visualizations take advantage of human background knowledge and pattern detection capabilities to find yet unknown patterns, to detect trends and to relate these findings to a holistic view on the problems. Besides discussing the origins of Visual Analytics, this paper presents concrete examples of how the two facets, content and infrastructure, of the Future Internet can benefit from Visual Analytics. In conclusion, it is the confluence of both technologies that will open up new opportunities for businesses, e-governance and the public. More... »

PAGES

93-104

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-30241-1_9

DOI

http://dx.doi.org/10.1007/978-3-642-30241-1_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022617825


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Fraunhofer IGD, Germany", 
          "id": "http://www.grid.ac/institutes/grid.461618.c", 
          "name": [
            "Fraunhofer IGD, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davey", 
        "givenName": "James", 
        "id": "sg:person.015522107135.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015522107135.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e4t Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "Universit\u00e4t Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mansmann", 
        "givenName": "Florian", 
        "id": "sg:person.0646626305.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646626305.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fraunhofer IGD, Germany", 
          "id": "http://www.grid.ac/institutes/grid.461618.c", 
          "name": [
            "Fraunhofer IGD, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kohlhammer", 
        "givenName": "J\u00f6rn", 
        "id": "sg:person.010050145447.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010050145447.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e4t Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "Universit\u00e4t Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keim", 
        "givenName": "Daniel", 
        "id": "sg:person.0635776571.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "In the Future Internet, Big Data can not only be found in the amount of traffic, logs or alerts of the network infrastructure, but also on the content side. While the term Big Data refers to the increase in available data, this implicitly means that we must deal with problems at a larger scale and thus hints at scalability issues in the analysis of such data sets. Visual Analytics is an enabling technology, that offers new ways of extracting information from Big Data through intelligent, interactive internet and security solutions. It derives its effectiveness both from scalable analysis algorithms, that allow processing of large data sets, and from scalable visualizations. These visualizations take advantage of human background knowledge and pattern detection capabilities to find yet unknown patterns, to detect trends and to relate these findings to a holistic view on the problems. Besides discussing the origins of Visual Analytics, this paper presents concrete examples of how the two facets, content and infrastructure, of the Future Internet can benefit from Visual Analytics. In conclusion, it is the confluence of both technologies that will open up new opportunities for businesses, e-governance and the public.", 
    "editor": [
      {
        "familyName": "\u00c1lvarez", 
        "givenName": "Federico", 
        "type": "Person"
      }, 
      {
        "familyName": "Cleary", 
        "givenName": "Frances", 
        "type": "Person"
      }, 
      {
        "familyName": "Daras", 
        "givenName": "Petros", 
        "type": "Person"
      }, 
      {
        "familyName": "Domingue", 
        "givenName": "John", 
        "type": "Person"
      }, 
      {
        "familyName": "Galis", 
        "givenName": "Alex", 
        "type": "Person"
      }, 
      {
        "familyName": "Garcia", 
        "givenName": "Ana", 
        "type": "Person"
      }, 
      {
        "familyName": "Gavras", 
        "givenName": "Anastasius", 
        "type": "Person"
      }, 
      {
        "familyName": "Karnourskos", 
        "givenName": "Stamatis", 
        "type": "Person"
      }, 
      {
        "familyName": "Krco", 
        "givenName": "Srdjan", 
        "type": "Person"
      }, 
      {
        "familyName": "Li", 
        "givenName": "Man-Sze", 
        "type": "Person"
      }, 
      {
        "familyName": "Lotz", 
        "givenName": "Volkmar", 
        "type": "Person"
      }, 
      {
        "familyName": "M\u00fcller", 
        "givenName": "Henning", 
        "type": "Person"
      }, 
      {
        "familyName": "Salvadori", 
        "givenName": "Elio", 
        "type": "Person"
      }, 
      {
        "familyName": "Sassen", 
        "givenName": "Anne-Marie", 
        "type": "Person"
      }, 
      {
        "familyName": "Schaffers", 
        "givenName": "Hans", 
        "type": "Person"
      }, 
      {
        "familyName": "Stiller", 
        "givenName": "Burkhard", 
        "type": "Person"
      }, 
      {
        "familyName": "Tselentis", 
        "givenName": "Georgios", 
        "type": "Person"
      }, 
      {
        "familyName": "Turkama", 
        "givenName": "Petra", 
        "type": "Person"
      }, 
      {
        "familyName": "Zahariadis", 
        "givenName": "Theodore", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-30241-1_9", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-30240-4", 
        "978-3-642-30241-1"
      ], 
      "name": "The Future Internet", 
      "type": "Book"
    }, 
    "keywords": [
      "visual analytics", 
      "big data", 
      "security solutions", 
      "future Internet", 
      "interactive Internet", 
      "term Big Data", 
      "human background knowledge", 
      "amount of traffic", 
      "data sets", 
      "large data sets", 
      "such data sets", 
      "scalable visualization", 
      "scalability issues", 
      "network infrastructure", 
      "unknown patterns", 
      "Internet", 
      "analytics", 
      "analysis algorithm", 
      "e-governance", 
      "background knowledge", 
      "detection capability", 
      "infrastructure", 
      "holistic view", 
      "visualization", 
      "concrete examples", 
      "technology", 
      "new opportunities", 
      "content side", 
      "large scale", 
      "new way", 
      "set", 
      "algorithm", 
      "traffic", 
      "alerts", 
      "data", 
      "processing", 
      "capability", 
      "business", 
      "information", 
      "solution", 
      "logs", 
      "effectiveness", 
      "issues", 
      "advantages", 
      "available data", 
      "way", 
      "example", 
      "hints", 
      "knowledge", 
      "view", 
      "opportunities", 
      "amount", 
      "public", 
      "facets", 
      "trends", 
      "patterns", 
      "content", 
      "analysis", 
      "scale", 
      "side", 
      "confluence", 
      "increase", 
      "findings", 
      "conclusion", 
      "origin", 
      "problem", 
      "paper"
    ], 
    "name": "Visual Analytics: Towards Intelligent Interactive Internet and Security Solutions", 
    "pagination": "93-104", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022617825"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-30241-1_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-30241-1_9", 
      "https://app.dimensions.ai/details/publication/pub.1022617825"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_21.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-30241-1_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-30241-1_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-30241-1_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-30241-1_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-30241-1_9'


 

This table displays all metadata directly associated to this object as RDF triples.

248 TRIPLES      22 PREDICATES      94 URIs      85 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-30241-1_9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0802
4 anzsrc-for:0806
5 schema:author Nc8cd108fa6014c3c82c852dc8470280d
6 schema:datePublished 2012
7 schema:datePublishedReg 2012-01-01
8 schema:description In the Future Internet, Big Data can not only be found in the amount of traffic, logs or alerts of the network infrastructure, but also on the content side. While the term Big Data refers to the increase in available data, this implicitly means that we must deal with problems at a larger scale and thus hints at scalability issues in the analysis of such data sets. Visual Analytics is an enabling technology, that offers new ways of extracting information from Big Data through intelligent, interactive internet and security solutions. It derives its effectiveness both from scalable analysis algorithms, that allow processing of large data sets, and from scalable visualizations. These visualizations take advantage of human background knowledge and pattern detection capabilities to find yet unknown patterns, to detect trends and to relate these findings to a holistic view on the problems. Besides discussing the origins of Visual Analytics, this paper presents concrete examples of how the two facets, content and infrastructure, of the Future Internet can benefit from Visual Analytics. In conclusion, it is the confluence of both technologies that will open up new opportunities for businesses, e-governance and the public.
9 schema:editor N6d97c61b16234a1c938eb6ab7bef760f
10 schema:genre chapter
11 schema:isAccessibleForFree true
12 schema:isPartOf Nfe5a994535a74c4ab4379db0eb175789
13 schema:keywords Internet
14 advantages
15 alerts
16 algorithm
17 amount
18 amount of traffic
19 analysis
20 analysis algorithm
21 analytics
22 available data
23 background knowledge
24 big data
25 business
26 capability
27 conclusion
28 concrete examples
29 confluence
30 content
31 content side
32 data
33 data sets
34 detection capability
35 e-governance
36 effectiveness
37 example
38 facets
39 findings
40 future Internet
41 hints
42 holistic view
43 human background knowledge
44 increase
45 information
46 infrastructure
47 interactive Internet
48 issues
49 knowledge
50 large data sets
51 large scale
52 logs
53 network infrastructure
54 new opportunities
55 new way
56 opportunities
57 origin
58 paper
59 patterns
60 problem
61 processing
62 public
63 scalability issues
64 scalable visualization
65 scale
66 security solutions
67 set
68 side
69 solution
70 such data sets
71 technology
72 term Big Data
73 traffic
74 trends
75 unknown patterns
76 view
77 visual analytics
78 visualization
79 way
80 schema:name Visual Analytics: Towards Intelligent Interactive Internet and Security Solutions
81 schema:pagination 93-104
82 schema:productId N20a71366197746c4b2e624f354641033
83 N3028b36f09584a6a959b8569970e817f
84 schema:publisher N33013b8c4a0f4ce5ae0927e65c9d7b19
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022617825
86 https://doi.org/10.1007/978-3-642-30241-1_9
87 schema:sdDatePublished 2022-10-01T06:54
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher N775b802e08d54516a2701342d5835a4b
90 schema:url https://doi.org/10.1007/978-3-642-30241-1_9
91 sgo:license sg:explorer/license/
92 sgo:sdDataset chapters
93 rdf:type schema:Chapter
94 N0f99ad144abd47b6ac41e1162a1191ee schema:familyName Salvadori
95 schema:givenName Elio
96 rdf:type schema:Person
97 N1211e8c8a7c842debe022c54a4fcfdfb rdf:first N8c5c568ecf604663af1114f4bb8153cb
98 rdf:rest Ncfe8f124f9cc43fe8057d38dee8344d4
99 N126535c8d33549ce9ce34ba24993febc rdf:first Nad2c6546157f4f48bacc115046648307
100 rdf:rest N6ac1ebfb14f74c869f1f466113f63749
101 N18e40149438845ceb236e9bc1a26d4dc rdf:first sg:person.0646626305.02
102 rdf:rest Ne73e525608ed46508966dc23cf2041c2
103 N1ea3c74b39034f1699e1061972070ffa rdf:first Nffde127223824be4a4e98f62f2f673d0
104 rdf:rest Nf468bea93201426fb3f9481263c7ce17
105 N20a71366197746c4b2e624f354641033 schema:name doi
106 schema:value 10.1007/978-3-642-30241-1_9
107 rdf:type schema:PropertyValue
108 N2309637ee6a341498746818b2af52136 schema:familyName Garcia
109 schema:givenName Ana
110 rdf:type schema:Person
111 N273e732ea19846c490e018291f801318 schema:familyName Gavras
112 schema:givenName Anastasius
113 rdf:type schema:Person
114 N277ed8a937304876998660adeb2c68fa rdf:first N7f02a11269a946dfab38e6fffc8ac0ef
115 rdf:rest N1ea3c74b39034f1699e1061972070ffa
116 N3028b36f09584a6a959b8569970e817f schema:name dimensions_id
117 schema:value pub.1022617825
118 rdf:type schema:PropertyValue
119 N33013b8c4a0f4ce5ae0927e65c9d7b19 schema:name Springer Nature
120 rdf:type schema:Organisation
121 N365a11be38d142048575322db8566381 rdf:first N58391c3d1c2e45a0ad9962543c9e1012
122 rdf:rest N69d1b55f3f6d444db63d2fac4e974b3f
123 N3b38d707c412409ab00486393b60b891 schema:familyName Lotz
124 schema:givenName Volkmar
125 rdf:type schema:Person
126 N3e142a2329284dde84c38fc41a2cdb69 rdf:first N273e732ea19846c490e018291f801318
127 rdf:rest N365a11be38d142048575322db8566381
128 N58391c3d1c2e45a0ad9962543c9e1012 schema:familyName Karnourskos
129 schema:givenName Stamatis
130 rdf:type schema:Person
131 N599b549f0b8145599dd678db889ad328 schema:familyName Domingue
132 schema:givenName John
133 rdf:type schema:Person
134 N69d1b55f3f6d444db63d2fac4e974b3f rdf:first N761c6be3acad4332b4518b476804bd1b
135 rdf:rest N1211e8c8a7c842debe022c54a4fcfdfb
136 N6a7528e5825847869a37731a0316d57a schema:familyName Álvarez
137 schema:givenName Federico
138 rdf:type schema:Person
139 N6ac1ebfb14f74c869f1f466113f63749 rdf:first N85e5ed6893bf46839ba6c7ef24fc0315
140 rdf:rest Nd4c8fa7d289b48c68fb593562f5edce9
141 N6d97c61b16234a1c938eb6ab7bef760f rdf:first N6a7528e5825847869a37731a0316d57a
142 rdf:rest Ne73270e22d5248df9efd757f6745b484
143 N73ad128b6e5d444f90585f709d1b4703 rdf:first N0f99ad144abd47b6ac41e1162a1191ee
144 rdf:rest N277ed8a937304876998660adeb2c68fa
145 N761c6be3acad4332b4518b476804bd1b schema:familyName Krco
146 schema:givenName Srdjan
147 rdf:type schema:Person
148 N767fb24c50ae48c0b7571fc602597404 schema:familyName Daras
149 schema:givenName Petros
150 rdf:type schema:Person
151 N775b802e08d54516a2701342d5835a4b schema:name Springer Nature - SN SciGraph project
152 rdf:type schema:Organization
153 N7f02a11269a946dfab38e6fffc8ac0ef schema:familyName Sassen
154 schema:givenName Anne-Marie
155 rdf:type schema:Person
156 N85e5ed6893bf46839ba6c7ef24fc0315 schema:familyName Turkama
157 schema:givenName Petra
158 rdf:type schema:Person
159 N8c5c568ecf604663af1114f4bb8153cb schema:familyName Li
160 schema:givenName Man-Sze
161 rdf:type schema:Person
162 N93da74f3c1044c0683570f3519768bbc schema:familyName Zahariadis
163 schema:givenName Theodore
164 rdf:type schema:Person
165 N94d1def8e3554fc1b9cb6ecf9d440df9 rdf:first N599b549f0b8145599dd678db889ad328
166 rdf:rest Na73f0a7fa1914f7c982ee5fcb978f188
167 N98d0f4bdd7164b6a8db73c3626f63e91 rdf:first N767fb24c50ae48c0b7571fc602597404
168 rdf:rest N94d1def8e3554fc1b9cb6ecf9d440df9
169 N9c6b55dca26441f5a6f6d06a2faeff81 schema:familyName Stiller
170 schema:givenName Burkhard
171 rdf:type schema:Person
172 Na73f0a7fa1914f7c982ee5fcb978f188 rdf:first Nd619fccced9c4acfb82738ece075ffdd
173 rdf:rest Nc8efbebe654b4a76b41a8cdd0a0ad508
174 Nad2c6546157f4f48bacc115046648307 schema:familyName Tselentis
175 schema:givenName Georgios
176 rdf:type schema:Person
177 Nae73b8edb9a54e10a3583d3f612b7cfc schema:familyName Cleary
178 schema:givenName Frances
179 rdf:type schema:Person
180 Nbb00939cebef4c4889949c62c59f9df6 schema:familyName Müller
181 schema:givenName Henning
182 rdf:type schema:Person
183 Nc8cd108fa6014c3c82c852dc8470280d rdf:first sg:person.015522107135.54
184 rdf:rest N18e40149438845ceb236e9bc1a26d4dc
185 Nc8efbebe654b4a76b41a8cdd0a0ad508 rdf:first N2309637ee6a341498746818b2af52136
186 rdf:rest N3e142a2329284dde84c38fc41a2cdb69
187 Ncb9416b2351a4a9d83b4cba1bb538355 rdf:first Nbb00939cebef4c4889949c62c59f9df6
188 rdf:rest N73ad128b6e5d444f90585f709d1b4703
189 Ncfe8f124f9cc43fe8057d38dee8344d4 rdf:first N3b38d707c412409ab00486393b60b891
190 rdf:rest Ncb9416b2351a4a9d83b4cba1bb538355
191 Nd1db542fe3eb49779a0d083c1f75ca9e rdf:first sg:person.0635776571.01
192 rdf:rest rdf:nil
193 Nd4c8fa7d289b48c68fb593562f5edce9 rdf:first N93da74f3c1044c0683570f3519768bbc
194 rdf:rest rdf:nil
195 Nd619fccced9c4acfb82738ece075ffdd schema:familyName Galis
196 schema:givenName Alex
197 rdf:type schema:Person
198 Ne73270e22d5248df9efd757f6745b484 rdf:first Nae73b8edb9a54e10a3583d3f612b7cfc
199 rdf:rest N98d0f4bdd7164b6a8db73c3626f63e91
200 Ne73e525608ed46508966dc23cf2041c2 rdf:first sg:person.010050145447.73
201 rdf:rest Nd1db542fe3eb49779a0d083c1f75ca9e
202 Nf468bea93201426fb3f9481263c7ce17 rdf:first N9c6b55dca26441f5a6f6d06a2faeff81
203 rdf:rest N126535c8d33549ce9ce34ba24993febc
204 Nfe5a994535a74c4ab4379db0eb175789 schema:isbn 978-3-642-30240-4
205 978-3-642-30241-1
206 schema:name The Future Internet
207 rdf:type schema:Book
208 Nffde127223824be4a4e98f62f2f673d0 schema:familyName Schaffers
209 schema:givenName Hans
210 rdf:type schema:Person
211 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
212 schema:name Information and Computing Sciences
213 rdf:type schema:DefinedTerm
214 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
215 schema:name Artificial Intelligence and Image Processing
216 rdf:type schema:DefinedTerm
217 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
218 schema:name Computation Theory and Mathematics
219 rdf:type schema:DefinedTerm
220 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
221 schema:name Information Systems
222 rdf:type schema:DefinedTerm
223 sg:person.010050145447.73 schema:affiliation grid-institutes:grid.461618.c
224 schema:familyName Kohlhammer
225 schema:givenName Jörn
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010050145447.73
227 rdf:type schema:Person
228 sg:person.015522107135.54 schema:affiliation grid-institutes:grid.461618.c
229 schema:familyName Davey
230 schema:givenName James
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015522107135.54
232 rdf:type schema:Person
233 sg:person.0635776571.01 schema:affiliation grid-institutes:grid.9811.1
234 schema:familyName Keim
235 schema:givenName Daniel
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01
237 rdf:type schema:Person
238 sg:person.0646626305.02 schema:affiliation grid-institutes:grid.9811.1
239 schema:familyName Mansmann
240 schema:givenName Florian
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646626305.02
242 rdf:type schema:Person
243 grid-institutes:grid.461618.c schema:alternateName Fraunhofer IGD, Germany
244 schema:name Fraunhofer IGD, Germany
245 rdf:type schema:Organization
246 grid-institutes:grid.9811.1 schema:alternateName Universität Konstanz, Germany
247 schema:name Universität Konstanz, Germany
248 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...