Visual Analytics: Towards Intelligent Interactive Internet and Security Solutions View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2012

AUTHORS

James Davey , Florian Mansmann , Jörn Kohlhammer , Daniel Keim

ABSTRACT

In the Future Internet, Big Data can not only be found in the amount of traffic, logs or alerts of the network infrastructure, but also on the content side. While the term Big Data refers to the increase in available data, this implicitly means that we must deal with problems at a larger scale and thus hints at scalability issues in the analysis of such data sets. Visual Analytics is an enabling technology, that offers new ways of extracting information from Big Data through intelligent, interactive internet and security solutions. It derives its effectiveness both from scalable analysis algorithms, that allow processing of large data sets, and from scalable visualizations. These visualizations take advantage of human background knowledge and pattern detection capabilities to find yet unknown patterns, to detect trends and to relate these findings to a holistic view on the problems. Besides discussing the origins of Visual Analytics, this paper presents concrete examples of how the two facets, content and infrastructure, of the Future Internet can benefit from Visual Analytics. In conclusion, it is the confluence of both technologies that will open up new opportunities for businesses, e-governance and the public. More... »

PAGES

93-104

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-30241-1_9

DOI

http://dx.doi.org/10.1007/978-3-642-30241-1_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022617825


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Fraunhofer IGD, Germany", 
          "id": "http://www.grid.ac/institutes/grid.461618.c", 
          "name": [
            "Fraunhofer IGD, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davey", 
        "givenName": "James", 
        "id": "sg:person.015522107135.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015522107135.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e4t Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "Universit\u00e4t Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mansmann", 
        "givenName": "Florian", 
        "id": "sg:person.0646626305.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646626305.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fraunhofer IGD, Germany", 
          "id": "http://www.grid.ac/institutes/grid.461618.c", 
          "name": [
            "Fraunhofer IGD, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kohlhammer", 
        "givenName": "J\u00f6rn", 
        "id": "sg:person.010050145447.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010050145447.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e4t Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "Universit\u00e4t Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keim", 
        "givenName": "Daniel", 
        "id": "sg:person.0635776571.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "In the Future Internet, Big Data can not only be found in the amount of traffic, logs or alerts of the network infrastructure, but also on the content side. While the term Big Data refers to the increase in available data, this implicitly means that we must deal with problems at a larger scale and thus hints at scalability issues in the analysis of such data sets. Visual Analytics is an enabling technology, that offers new ways of extracting information from Big Data through intelligent, interactive internet and security solutions. It derives its effectiveness both from scalable analysis algorithms, that allow processing of large data sets, and from scalable visualizations. These visualizations take advantage of human background knowledge and pattern detection capabilities to find yet unknown patterns, to detect trends and to relate these findings to a holistic view on the problems. Besides discussing the origins of Visual Analytics, this paper presents concrete examples of how the two facets, content and infrastructure, of the Future Internet can benefit from Visual Analytics. In conclusion, it is the confluence of both technologies that will open up new opportunities for businesses, e-governance and the public.", 
    "editor": [
      {
        "familyName": "\u00c1lvarez", 
        "givenName": "Federico", 
        "type": "Person"
      }, 
      {
        "familyName": "Cleary", 
        "givenName": "Frances", 
        "type": "Person"
      }, 
      {
        "familyName": "Daras", 
        "givenName": "Petros", 
        "type": "Person"
      }, 
      {
        "familyName": "Domingue", 
        "givenName": "John", 
        "type": "Person"
      }, 
      {
        "familyName": "Galis", 
        "givenName": "Alex", 
        "type": "Person"
      }, 
      {
        "familyName": "Garcia", 
        "givenName": "Ana", 
        "type": "Person"
      }, 
      {
        "familyName": "Gavras", 
        "givenName": "Anastasius", 
        "type": "Person"
      }, 
      {
        "familyName": "Karnourskos", 
        "givenName": "Stamatis", 
        "type": "Person"
      }, 
      {
        "familyName": "Krco", 
        "givenName": "Srdjan", 
        "type": "Person"
      }, 
      {
        "familyName": "Li", 
        "givenName": "Man-Sze", 
        "type": "Person"
      }, 
      {
        "familyName": "Lotz", 
        "givenName": "Volkmar", 
        "type": "Person"
      }, 
      {
        "familyName": "M\u00fcller", 
        "givenName": "Henning", 
        "type": "Person"
      }, 
      {
        "familyName": "Salvadori", 
        "givenName": "Elio", 
        "type": "Person"
      }, 
      {
        "familyName": "Sassen", 
        "givenName": "Anne-Marie", 
        "type": "Person"
      }, 
      {
        "familyName": "Schaffers", 
        "givenName": "Hans", 
        "type": "Person"
      }, 
      {
        "familyName": "Stiller", 
        "givenName": "Burkhard", 
        "type": "Person"
      }, 
      {
        "familyName": "Tselentis", 
        "givenName": "Georgios", 
        "type": "Person"
      }, 
      {
        "familyName": "Turkama", 
        "givenName": "Petra", 
        "type": "Person"
      }, 
      {
        "familyName": "Zahariadis", 
        "givenName": "Theodore", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-30241-1_9", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-30240-4", 
        "978-3-642-30241-1"
      ], 
      "name": "The Future Internet", 
      "type": "Book"
    }, 
    "keywords": [
      "visual analytics", 
      "big data", 
      "security solutions", 
      "future Internet", 
      "interactive Internet", 
      "term Big Data", 
      "human background knowledge", 
      "amount of traffic", 
      "data sets", 
      "large data sets", 
      "such data sets", 
      "scalable visualization", 
      "scalability issues", 
      "network infrastructure", 
      "unknown patterns", 
      "Internet", 
      "analytics", 
      "analysis algorithm", 
      "e-governance", 
      "background knowledge", 
      "detection capability", 
      "infrastructure", 
      "holistic view", 
      "visualization", 
      "concrete examples", 
      "technology", 
      "new opportunities", 
      "content side", 
      "large scale", 
      "new way", 
      "set", 
      "algorithm", 
      "traffic", 
      "alerts", 
      "data", 
      "processing", 
      "capability", 
      "business", 
      "information", 
      "solution", 
      "logs", 
      "effectiveness", 
      "issues", 
      "advantages", 
      "available data", 
      "way", 
      "example", 
      "hints", 
      "knowledge", 
      "view", 
      "opportunities", 
      "amount", 
      "public", 
      "facets", 
      "trends", 
      "patterns", 
      "content", 
      "analysis", 
      "scale", 
      "side", 
      "confluence", 
      "increase", 
      "findings", 
      "conclusion", 
      "origin", 
      "problem", 
      "paper"
    ], 
    "name": "Visual Analytics: Towards Intelligent Interactive Internet and Security Solutions", 
    "pagination": "93-104", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022617825"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-30241-1_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-30241-1_9", 
      "https://app.dimensions.ai/details/publication/pub.1022617825"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_138.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-30241-1_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-30241-1_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-30241-1_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-30241-1_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-30241-1_9'


 

This table displays all metadata directly associated to this object as RDF triples.

248 TRIPLES      22 PREDICATES      94 URIs      85 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-30241-1_9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0802
4 anzsrc-for:0806
5 schema:author Ne717f7219402475a98fd3506c04c5128
6 schema:datePublished 2012
7 schema:datePublishedReg 2012-01-01
8 schema:description In the Future Internet, Big Data can not only be found in the amount of traffic, logs or alerts of the network infrastructure, but also on the content side. While the term Big Data refers to the increase in available data, this implicitly means that we must deal with problems at a larger scale and thus hints at scalability issues in the analysis of such data sets. Visual Analytics is an enabling technology, that offers new ways of extracting information from Big Data through intelligent, interactive internet and security solutions. It derives its effectiveness both from scalable analysis algorithms, that allow processing of large data sets, and from scalable visualizations. These visualizations take advantage of human background knowledge and pattern detection capabilities to find yet unknown patterns, to detect trends and to relate these findings to a holistic view on the problems. Besides discussing the origins of Visual Analytics, this paper presents concrete examples of how the two facets, content and infrastructure, of the Future Internet can benefit from Visual Analytics. In conclusion, it is the confluence of both technologies that will open up new opportunities for businesses, e-governance and the public.
9 schema:editor N367b9a507af14e0ebba65b29a0334621
10 schema:genre chapter
11 schema:isAccessibleForFree true
12 schema:isPartOf Nc35be1c667414bc3b63cd84d820e7126
13 schema:keywords Internet
14 advantages
15 alerts
16 algorithm
17 amount
18 amount of traffic
19 analysis
20 analysis algorithm
21 analytics
22 available data
23 background knowledge
24 big data
25 business
26 capability
27 conclusion
28 concrete examples
29 confluence
30 content
31 content side
32 data
33 data sets
34 detection capability
35 e-governance
36 effectiveness
37 example
38 facets
39 findings
40 future Internet
41 hints
42 holistic view
43 human background knowledge
44 increase
45 information
46 infrastructure
47 interactive Internet
48 issues
49 knowledge
50 large data sets
51 large scale
52 logs
53 network infrastructure
54 new opportunities
55 new way
56 opportunities
57 origin
58 paper
59 patterns
60 problem
61 processing
62 public
63 scalability issues
64 scalable visualization
65 scale
66 security solutions
67 set
68 side
69 solution
70 such data sets
71 technology
72 term Big Data
73 traffic
74 trends
75 unknown patterns
76 view
77 visual analytics
78 visualization
79 way
80 schema:name Visual Analytics: Towards Intelligent Interactive Internet and Security Solutions
81 schema:pagination 93-104
82 schema:productId N7863e2aa2a984f00b48a187cb59301c7
83 N96136a7eaff44f1ea7502f82a85537f5
84 schema:publisher N11cec6f245dd43dd9877efe0e83ce087
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022617825
86 https://doi.org/10.1007/978-3-642-30241-1_9
87 schema:sdDatePublished 2022-12-01T06:47
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher N34ccce4f1bc8468ea8efa2b7a3e9cfda
90 schema:url https://doi.org/10.1007/978-3-642-30241-1_9
91 sgo:license sg:explorer/license/
92 sgo:sdDataset chapters
93 rdf:type schema:Chapter
94 N01dbd36d8dd043b6b68fb3eb221091d3 rdf:first Nef37380b3c71427586819ce1f4d69a6a
95 rdf:rest N43a8947b2755497386d8c22bb45b89f5
96 N0552b942bf824e6ba9e7b32083f155bb rdf:first N6f0d3a321a2f4636b11b82731e889fd7
97 rdf:rest N404e5b1289e64c4195499b6d97f9ff07
98 N11cec6f245dd43dd9877efe0e83ce087 schema:name Springer Nature
99 rdf:type schema:Organisation
100 N2036f229878e4793b80dd2c6e845a4b9 rdf:first Ndaf0aff60d144e7b888be9d77e67b133
101 rdf:rest Nd8376a9bd39f48438e82efd0b1362336
102 N26b54dba15f34a969d2ace84a5be63b6 rdf:first Ne09c7b4149644d0280616276197ecd0f
103 rdf:rest N8fa186bedd934ec1b661620a8887af2c
104 N288bb3b9c9244f799038eaebc8af3e63 rdf:first N68f5b3d83db4470d9f394b5b5cd39eeb
105 rdf:rest N26b54dba15f34a969d2ace84a5be63b6
106 N28a9c12a58d942d79c8fde0d90169f25 schema:familyName Gavras
107 schema:givenName Anastasius
108 rdf:type schema:Person
109 N2e40d68adb1f4b12aae5208c6663129c schema:familyName Lotz
110 schema:givenName Volkmar
111 rdf:type schema:Person
112 N3284307f6f7245c0b661663a4a06c7bb rdf:first sg:person.010050145447.73
113 rdf:rest Nbbc790503cbe4a33affcee85a7036d2f
114 N34ccce4f1bc8468ea8efa2b7a3e9cfda schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 N367b9a507af14e0ebba65b29a0334621 rdf:first N5d3c276e5866462899ca8b40b3e930e2
117 rdf:rest N2036f229878e4793b80dd2c6e845a4b9
118 N404e5b1289e64c4195499b6d97f9ff07 rdf:first Nc8b53465975d4dbd81d45eafdc3c5bfe
119 rdf:rest Nc59b8451945a4b0a8a7df32494dbe02d
120 N43a8947b2755497386d8c22bb45b89f5 rdf:first N4f1fca5c0fb345b6b342e1f862cee0f0
121 rdf:rest rdf:nil
122 N4bc6b134f69746c6a50da4f1a6e3caf1 rdf:first N4c12c4a6fcc64bdea355e3118867be66
123 rdf:rest N01dbd36d8dd043b6b68fb3eb221091d3
124 N4c12c4a6fcc64bdea355e3118867be66 schema:familyName Tselentis
125 schema:givenName Georgios
126 rdf:type schema:Person
127 N4f1fca5c0fb345b6b342e1f862cee0f0 schema:familyName Zahariadis
128 schema:givenName Theodore
129 rdf:type schema:Person
130 N5d3c276e5866462899ca8b40b3e930e2 schema:familyName Álvarez
131 schema:givenName Federico
132 rdf:type schema:Person
133 N62949bf562034655bd4f311651005f73 schema:familyName Garcia
134 schema:givenName Ana
135 rdf:type schema:Person
136 N6842dbdc81c04d0bb18a4ce63a8a92b1 rdf:first N2e40d68adb1f4b12aae5208c6663129c
137 rdf:rest N729bb0fe99db4af7acef0e147cc8874c
138 N68f5b3d83db4470d9f394b5b5cd39eeb schema:familyName Domingue
139 schema:givenName John
140 rdf:type schema:Person
141 N6f0d3a321a2f4636b11b82731e889fd7 schema:familyName Karnourskos
142 schema:givenName Stamatis
143 rdf:type schema:Person
144 N729bb0fe99db4af7acef0e147cc8874c rdf:first N7d65859b90d44724a799edbd7c4086d0
145 rdf:rest Nb601e5e6550f47d690e88913c496a5f6
146 N7863e2aa2a984f00b48a187cb59301c7 schema:name dimensions_id
147 schema:value pub.1022617825
148 rdf:type schema:PropertyValue
149 N7c5555fcddd5454f984c2fa06261f216 schema:familyName Li
150 schema:givenName Man-Sze
151 rdf:type schema:Person
152 N7ce95f4d42bf4d5b9ef37001fbd07629 schema:familyName Sassen
153 schema:givenName Anne-Marie
154 rdf:type schema:Person
155 N7d65859b90d44724a799edbd7c4086d0 schema:familyName Müller
156 schema:givenName Henning
157 rdf:type schema:Person
158 N8fa186bedd934ec1b661620a8887af2c rdf:first N62949bf562034655bd4f311651005f73
159 rdf:rest Naee7ef23dfe64e22a08b3f24e5199927
160 N9228143be11344409f57ad8ef617c3f8 schema:familyName Daras
161 schema:givenName Petros
162 rdf:type schema:Person
163 N96136a7eaff44f1ea7502f82a85537f5 schema:name doi
164 schema:value 10.1007/978-3-642-30241-1_9
165 rdf:type schema:PropertyValue
166 Naee7ef23dfe64e22a08b3f24e5199927 rdf:first N28a9c12a58d942d79c8fde0d90169f25
167 rdf:rest N0552b942bf824e6ba9e7b32083f155bb
168 Nb601e5e6550f47d690e88913c496a5f6 rdf:first Nfc01ccb8ed9e468b872873ece4122f84
169 rdf:rest Nd5047d046a04409ba4d0a9a3d6b2e027
170 Nbbc790503cbe4a33affcee85a7036d2f rdf:first sg:person.0635776571.01
171 rdf:rest rdf:nil
172 Nc35be1c667414bc3b63cd84d820e7126 schema:isbn 978-3-642-30240-4
173 978-3-642-30241-1
174 schema:name The Future Internet
175 rdf:type schema:Book
176 Nc59b8451945a4b0a8a7df32494dbe02d rdf:first N7c5555fcddd5454f984c2fa06261f216
177 rdf:rest N6842dbdc81c04d0bb18a4ce63a8a92b1
178 Nc8b53465975d4dbd81d45eafdc3c5bfe schema:familyName Krco
179 schema:givenName Srdjan
180 rdf:type schema:Person
181 Ncdacb680633e4eddb0be18895a9d4e43 rdf:first Nf685b0b6c5574aa9a0fa85135b246735
182 rdf:rest N4bc6b134f69746c6a50da4f1a6e3caf1
183 Ncf9d26d6606c4431ac69171e151237cd rdf:first Nd496cc824c6b438dbfddcf4ca607af41
184 rdf:rest Ncdacb680633e4eddb0be18895a9d4e43
185 Nd496cc824c6b438dbfddcf4ca607af41 schema:familyName Schaffers
186 schema:givenName Hans
187 rdf:type schema:Person
188 Nd5047d046a04409ba4d0a9a3d6b2e027 rdf:first N7ce95f4d42bf4d5b9ef37001fbd07629
189 rdf:rest Ncf9d26d6606c4431ac69171e151237cd
190 Nd8376a9bd39f48438e82efd0b1362336 rdf:first N9228143be11344409f57ad8ef617c3f8
191 rdf:rest N288bb3b9c9244f799038eaebc8af3e63
192 Ndaf0aff60d144e7b888be9d77e67b133 schema:familyName Cleary
193 schema:givenName Frances
194 rdf:type schema:Person
195 Ne09c7b4149644d0280616276197ecd0f schema:familyName Galis
196 schema:givenName Alex
197 rdf:type schema:Person
198 Ne717f7219402475a98fd3506c04c5128 rdf:first sg:person.015522107135.54
199 rdf:rest Nfe21c0db5d494ffe825525e4a6b89655
200 Nef37380b3c71427586819ce1f4d69a6a schema:familyName Turkama
201 schema:givenName Petra
202 rdf:type schema:Person
203 Nf685b0b6c5574aa9a0fa85135b246735 schema:familyName Stiller
204 schema:givenName Burkhard
205 rdf:type schema:Person
206 Nfc01ccb8ed9e468b872873ece4122f84 schema:familyName Salvadori
207 schema:givenName Elio
208 rdf:type schema:Person
209 Nfe21c0db5d494ffe825525e4a6b89655 rdf:first sg:person.0646626305.02
210 rdf:rest N3284307f6f7245c0b661663a4a06c7bb
211 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
212 schema:name Information and Computing Sciences
213 rdf:type schema:DefinedTerm
214 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
215 schema:name Artificial Intelligence and Image Processing
216 rdf:type schema:DefinedTerm
217 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
218 schema:name Computation Theory and Mathematics
219 rdf:type schema:DefinedTerm
220 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
221 schema:name Information Systems
222 rdf:type schema:DefinedTerm
223 sg:person.010050145447.73 schema:affiliation grid-institutes:grid.461618.c
224 schema:familyName Kohlhammer
225 schema:givenName Jörn
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010050145447.73
227 rdf:type schema:Person
228 sg:person.015522107135.54 schema:affiliation grid-institutes:grid.461618.c
229 schema:familyName Davey
230 schema:givenName James
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015522107135.54
232 rdf:type schema:Person
233 sg:person.0635776571.01 schema:affiliation grid-institutes:grid.9811.1
234 schema:familyName Keim
235 schema:givenName Daniel
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01
237 rdf:type schema:Person
238 sg:person.0646626305.02 schema:affiliation grid-institutes:grid.9811.1
239 schema:familyName Mansmann
240 schema:givenName Florian
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646626305.02
242 rdf:type schema:Person
243 grid-institutes:grid.461618.c schema:alternateName Fraunhofer IGD, Germany
244 schema:name Fraunhofer IGD, Germany
245 rdf:type schema:Organization
246 grid-institutes:grid.9811.1 schema:alternateName Universität Konstanz, Germany
247 schema:name Universität Konstanz, Germany
248 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...