LoopWeaver – Loop Modeling by the Weighted Scaling of Verified Proteins View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2012

AUTHORS

Daniel Holtby , Shuai Cheng Li , Ming Li

ABSTRACT

Modeling loops is a necessary step in protein structure determination even with experimental NMR data. It is well known to be difficult. Database techniques have the advantage of producing a higher proportion of predictions with sub-angstrom accuracy, when compared with ab initio techniques, but the disadvantage of also producing a higher proportion of clashing or highly inaccurate predictions. We introduce LoopWeaver, a database method that uses multidimensional scaling to achieve better clash-free placement of loops obtained from a database of protein structures. This allows us to maintain the above-mentioned advantage while avoiding the disadvantage. Test results show that we achieve significantly better results than all other methods, including Modeler, Loopy, SuperLooper, and Rapper before refinement. With refinement, our results (LoopWeaver and Loopy consensus) are better than ROSETTA, with 0.42Å RMSD on average for 206 length 6 loops, 0.64Å local RMSD for 168 length 7 loops, 0.81Å RMSD for 117 length 8 loops, and 0.98Å RMSD for length 9 loops, while ROSETTA has 0.55, 0.79, 1.16, 1.42, respectively, at the same average time limit (3 hours). When we allow ROSETTA run for over a week, it approaches, but does not surpass, our accuracy. More... »

PAGES

113-126

References to SciGraph publications

Book

TITLE

Research in Computational Molecular Biology

ISBN

978-3-642-29626-0
978-3-642-29627-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-29627-7_11

DOI

http://dx.doi.org/10.1007/978-3-642-29627-7_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003741536


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "University of Waterloo, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holtby", 
        "givenName": "Daniel", 
        "id": "sg:person.01070045537.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070045537.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "City University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.35030.35", 
          "name": [
            "City University of Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Shuai Cheng", 
        "id": "sg:person.01314123720.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314123720.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "University of Waterloo, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Ming", 
        "id": "sg:person.0621576316.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621576316.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1110/ps.9.9.1753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003301939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.9.9.1753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003301939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.03411904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004929413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.0217002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011292273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2007.07.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015170157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019093765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0809-551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022615416", 
          "https://doi.org/10.1038/nmeth0809-551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023596622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023596622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0076-6879(03)74020-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027914988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030521598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1162349.1162350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031054153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.10235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031089725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11415770_32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035348483", 
          "https://doi.org/10.1007/11415770_32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11415770_32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035348483", 
          "https://doi.org/10.1007/11415770_32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.102179699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035454027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.21612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035926863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.21612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035926863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/264645.264657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038424586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038672746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038672746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039874662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039874662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bip.360221211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045206155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.37601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051767508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.21040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052197089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/gzg119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052269263"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Modeling loops is a necessary step in protein structure determination even with experimental NMR data. It is well known to be difficult. Database techniques have the advantage of producing a higher proportion of predictions with sub-angstrom accuracy, when compared with ab initio techniques, but the disadvantage of also producing a higher proportion of clashing or highly inaccurate predictions. We introduce LoopWeaver, a database method that uses multidimensional scaling to achieve better clash-free placement of loops obtained from a database of protein structures. This allows us to maintain the above-mentioned advantage while avoiding the disadvantage. Test results show that we achieve significantly better results than all other methods, including Modeler, Loopy, SuperLooper, and Rapper before refinement. With refinement, our results (LoopWeaver and Loopy consensus) are better than ROSETTA, with 0.42\u00c5 RMSD on average for 206 length 6 loops, 0.64\u00c5 local RMSD for 168 length 7 loops, 0.81\u00c5 RMSD for 117 length 8 loops, and 0.98\u00c5 RMSD for length 9 loops, while ROSETTA has 0.55, 0.79, 1.16, 1.42, respectively, at the same average time limit (3 hours). When we allow ROSETTA run for over a week, it approaches, but does not surpass, our accuracy.", 
    "editor": [
      {
        "familyName": "Chor", 
        "givenName": "Benny", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-29627-7_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-29626-0", 
        "978-3-642-29627-7"
      ], 
      "name": "Research in Computational Molecular Biology", 
      "type": "Book"
    }, 
    "name": "LoopWeaver \u2013 Loop Modeling by the Weighted Scaling of Verified Proteins", 
    "pagination": "113-126", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-29627-7_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "11d2afbc4d42d6c2f2091e30233ec53a88b46e0b0a0c153caff8d278d2c70a2c"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003741536"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-29627-7_11", 
      "https://app.dimensions.ai/details/publication/pub.1003741536"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000245.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-29627-7_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-29627-7_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-29627-7_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-29627-7_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-29627-7_11'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      23 PREDICATES      48 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-29627-7_11 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nf457a0bc26ec4be8bd08fb59014ff711
4 schema:citation sg:pub.10.1007/11415770_32
5 sg:pub.10.1038/nmeth0809-551
6 https://doi.org/10.1002/bip.360221211
7 https://doi.org/10.1002/prot.10235
8 https://doi.org/10.1002/prot.21040
9 https://doi.org/10.1002/prot.21612
10 https://doi.org/10.1002/prot.22634
11 https://doi.org/10.1002/prot.22658
12 https://doi.org/10.1002/prot.22849
13 https://doi.org/10.1016/j.jmb.2007.07.050
14 https://doi.org/10.1016/s0076-6879(03)74020-8
15 https://doi.org/10.1073/pnas.102179699
16 https://doi.org/10.1093/bioinformatics/btg224
17 https://doi.org/10.1093/nar/gkp338
18 https://doi.org/10.1093/protein/gzg119
19 https://doi.org/10.1110/ps.0217002
20 https://doi.org/10.1110/ps.03411904
21 https://doi.org/10.1110/ps.37601
22 https://doi.org/10.1110/ps.9.9.1753
23 https://doi.org/10.1145/1162349.1162350
24 https://doi.org/10.1145/264645.264657
25 schema:datePublished 2012
26 schema:datePublishedReg 2012-01-01
27 schema:description Modeling loops is a necessary step in protein structure determination even with experimental NMR data. It is well known to be difficult. Database techniques have the advantage of producing a higher proportion of predictions with sub-angstrom accuracy, when compared with ab initio techniques, but the disadvantage of also producing a higher proportion of clashing or highly inaccurate predictions. We introduce LoopWeaver, a database method that uses multidimensional scaling to achieve better clash-free placement of loops obtained from a database of protein structures. This allows us to maintain the above-mentioned advantage while avoiding the disadvantage. Test results show that we achieve significantly better results than all other methods, including Modeler, Loopy, SuperLooper, and Rapper before refinement. With refinement, our results (LoopWeaver and Loopy consensus) are better than ROSETTA, with 0.42Å RMSD on average for 206 length 6 loops, 0.64Å local RMSD for 168 length 7 loops, 0.81Å RMSD for 117 length 8 loops, and 0.98Å RMSD for length 9 loops, while ROSETTA has 0.55, 0.79, 1.16, 1.42, respectively, at the same average time limit (3 hours). When we allow ROSETTA run for over a week, it approaches, but does not surpass, our accuracy.
28 schema:editor Nffebaa7ddc324beb893656bebe7f5353
29 schema:genre chapter
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N5c7baad3cca34481b04729b7c3260e78
33 schema:name LoopWeaver – Loop Modeling by the Weighted Scaling of Verified Proteins
34 schema:pagination 113-126
35 schema:productId N1ac7f83aba8040cbaa3e8f0a90f493ff
36 N5b0b141e552e4c778b335e9ff41cf32d
37 Nea616a4159714f238fd8458b68e54d8e
38 schema:publisher N902614b2678c42ed88f653e4c848100e
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003741536
40 https://doi.org/10.1007/978-3-642-29627-7_11
41 schema:sdDatePublished 2019-04-15T20:03
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N5096fa9b03444de3bbb620623120236a
44 schema:url http://link.springer.com/10.1007/978-3-642-29627-7_11
45 sgo:license sg:explorer/license/
46 sgo:sdDataset chapters
47 rdf:type schema:Chapter
48 N1ac7f83aba8040cbaa3e8f0a90f493ff schema:name dimensions_id
49 schema:value pub.1003741536
50 rdf:type schema:PropertyValue
51 N4fc5f9530e6e4f079cba636f4773566a rdf:first sg:person.0621576316.79
52 rdf:rest rdf:nil
53 N5096fa9b03444de3bbb620623120236a schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N5b0b141e552e4c778b335e9ff41cf32d schema:name readcube_id
56 schema:value 11d2afbc4d42d6c2f2091e30233ec53a88b46e0b0a0c153caff8d278d2c70a2c
57 rdf:type schema:PropertyValue
58 N5c7baad3cca34481b04729b7c3260e78 schema:isbn 978-3-642-29626-0
59 978-3-642-29627-7
60 schema:name Research in Computational Molecular Biology
61 rdf:type schema:Book
62 N81507e9c56294784bb9d66454e111751 schema:familyName Chor
63 schema:givenName Benny
64 rdf:type schema:Person
65 N902614b2678c42ed88f653e4c848100e schema:location Berlin, Heidelberg
66 schema:name Springer Berlin Heidelberg
67 rdf:type schema:Organisation
68 Nea616a4159714f238fd8458b68e54d8e schema:name doi
69 schema:value 10.1007/978-3-642-29627-7_11
70 rdf:type schema:PropertyValue
71 Nf1e6f68d4cde49eba652ddafcc27834b rdf:first sg:person.01314123720.90
72 rdf:rest N4fc5f9530e6e4f079cba636f4773566a
73 Nf457a0bc26ec4be8bd08fb59014ff711 rdf:first sg:person.01070045537.34
74 rdf:rest Nf1e6f68d4cde49eba652ddafcc27834b
75 Nffebaa7ddc324beb893656bebe7f5353 rdf:first N81507e9c56294784bb9d66454e111751
76 rdf:rest rdf:nil
77 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
78 schema:name Physical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
81 schema:name Other Physical Sciences
82 rdf:type schema:DefinedTerm
83 sg:person.01070045537.34 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
84 schema:familyName Holtby
85 schema:givenName Daniel
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070045537.34
87 rdf:type schema:Person
88 sg:person.01314123720.90 schema:affiliation https://www.grid.ac/institutes/grid.35030.35
89 schema:familyName Li
90 schema:givenName Shuai Cheng
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314123720.90
92 rdf:type schema:Person
93 sg:person.0621576316.79 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
94 schema:familyName Li
95 schema:givenName Ming
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621576316.79
97 rdf:type schema:Person
98 sg:pub.10.1007/11415770_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035348483
99 https://doi.org/10.1007/11415770_32
100 rdf:type schema:CreativeWork
101 sg:pub.10.1038/nmeth0809-551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022615416
102 https://doi.org/10.1038/nmeth0809-551
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1002/bip.360221211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045206155
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1002/prot.10235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031089725
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1002/prot.21040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052197089
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/prot.21612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035926863
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/prot.22634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023596622
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1002/prot.22658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038672746
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1002/prot.22849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039874662
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.jmb.2007.07.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015170157
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/s0076-6879(03)74020-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027914988
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1073/pnas.102179699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035454027
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1093/bioinformatics/btg224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030521598
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1093/nar/gkp338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019093765
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1093/protein/gzg119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052269263
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1110/ps.0217002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011292273
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1110/ps.03411904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004929413
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1110/ps.37601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051767508
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1110/ps.9.9.1753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003301939
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1145/1162349.1162350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031054153
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1145/264645.264657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038424586
141 rdf:type schema:CreativeWork
142 https://www.grid.ac/institutes/grid.35030.35 schema:alternateName City University of Hong Kong
143 schema:name City University of Hong Kong, China
144 rdf:type schema:Organization
145 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
146 schema:name University of Waterloo, Canada
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...