Protein Structure by Semidefinite Facial Reduction View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Babak Alipanahi , Nathan Krislock , Ali Ghodsi , Henry Wolkowicz , Logan Donaldson , Ming Li

ABSTRACT

All practical contemporary protein NMR structure determination methods use molecular dynamics coupled with a simulated annealing schedule. The objective of these methods is to minimize the error of deviating from the NOE distance constraints. However, this objective function is highly nonconvex and, consequently, difficult to optimize. Euclidean distance geometry methods based on semidefinite programming (SDP) provide a natural formulation for this problem. However, complexity of SDP solvers and ambiguous distance constraints are major challenges to this approach. The contribution of this paper is to provide a new SDP formulation of this problem that overcomes these two issues for the first time. We model the protein as a set of intersecting two- and three-dimensional cliques, then we adapt and extend a technique called semidefinite facial reduction to reduce the SDP problem size to approximately one quarter of the size of the original problem. The reduced SDP problem can not only be solved approximately 100 times faster, but is also resistant to numerical problems from having erroneous and inexact distance bounds. More... »

PAGES

1-11

Book

TITLE

Research in Computational Molecular Biology

ISBN

978-3-642-29626-0
978-3-642-29627-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-29627-7_1

DOI

http://dx.doi.org/10.1007/978-3-642-29627-7_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051681702


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alipanahi", 
        "givenName": "Babak", 
        "id": "sg:person.0754727434.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754727434.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Inria Grenoble - Rh\u00f4ne-Alpes research centre", 
          "id": "https://www.grid.ac/institutes/grid.457351.1", 
          "name": [
            "INRIA Grenoble Rh\u00f4ne-Alpes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krislock", 
        "givenName": "Nathan", 
        "id": "sg:person.01223752130.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223752130.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghodsi", 
        "givenName": "Ali", 
        "id": "sg:person.07545373531.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07545373531.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wolkowicz", 
        "givenName": "Henry", 
        "id": "sg:person.0607736332.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607736332.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "York University", 
          "id": "https://www.grid.ac/institutes/grid.21100.32", 
          "name": [
            "Department of Biology, York University, Toronto, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Donaldson", 
        "givenName": "Logan", 
        "id": "sg:person.016450557552.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016450557552.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Ming", 
        "id": "sg:person.0621576316.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621576316.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/19.2.315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000478652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-002-0347-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004848160", 
          "https://doi.org/10.1007/s10107-002-0347-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007977523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-5793(88)81148-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008677183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10858-005-2195-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010906927", 
          "https://doi.org/10.1007/s10858-005-2195-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10858-005-2195-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010906927", 
          "https://doi.org/10.1007/s10858-005-2195-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1997.1284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011642887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0800256105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014826453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1385/1-59259-809-9:353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016740745", 
          "https://doi.org/10.1385/1-59259-809-9:353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1090-7807(02)00014-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017921984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1090-7807(02)00014-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017921984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444909042073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018458004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444909042073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018458004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2795(81)90205-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027307485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2795(81)90205-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027307485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1023514106644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027486475", 
          "https://doi.org/10.1023/a:1023514106644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(85)90134-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035083567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmre.1997.1116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048754314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-008-0256-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049198426", 
          "https://doi.org/10.1007/s10107-008-0256-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-008-0256-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049198426", 
          "https://doi.org/10.1007/s10107-008-0256-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560050609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052000147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560050609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052000147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0033583598003436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054077673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0033583598003436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054077673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/106652701753216521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1183649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062461352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1183649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062461352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/05062754x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062846110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/080733103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062855072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/090759392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062856341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1038003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062863973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1052623495283024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062883493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1052623495288350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062883507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219720011005276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063005013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1968654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069674069"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "All practical contemporary protein NMR structure determination methods use molecular dynamics coupled with a simulated annealing schedule. The objective of these methods is to minimize the error of deviating from the NOE distance constraints. However, this objective function is highly nonconvex and, consequently, difficult to optimize. Euclidean distance geometry methods based on semidefinite programming (SDP) provide a natural formulation for this problem. However, complexity of SDP solvers and ambiguous distance constraints are major challenges to this approach. The contribution of this paper is to provide a new SDP formulation of this problem that overcomes these two issues for the first time. We model the protein as a set of intersecting two- and three-dimensional cliques, then we adapt and extend a technique called semidefinite facial reduction to reduce the SDP problem size to approximately one quarter of the size of the original problem. The reduced SDP problem can not only be solved approximately 100 times faster, but is also resistant to numerical problems from having erroneous and inexact distance bounds.", 
    "editor": [
      {
        "familyName": "Chor", 
        "givenName": "Benny", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-29627-7_1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-29626-0", 
        "978-3-642-29627-7"
      ], 
      "name": "Research in Computational Molecular Biology", 
      "type": "Book"
    }, 
    "name": "Protein Structure by Semidefinite Facial Reduction", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-29627-7_1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f62f78416934dbafa8bd12bd2bfa2865f995980e1b5802005551b5fc525c6336"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051681702"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-29627-7_1", 
      "https://app.dimensions.ai/details/publication/pub.1051681702"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000275.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-29627-7_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-29627-7_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-29627-7_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-29627-7_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-29627-7_1'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      23 PREDICATES      54 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-29627-7_1 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N638822118b3a4c1381ca6fb17e4534a8
4 schema:citation sg:pub.10.1007/s10107-002-0347-5
5 sg:pub.10.1007/s10107-008-0256-3
6 sg:pub.10.1007/s10858-005-2195-0
7 sg:pub.10.1023/a:1023514106644
8 sg:pub.10.1385/1-59259-809-9:353
9 https://doi.org/10.1002/pro.5560050609
10 https://doi.org/10.1006/jmbi.1997.1284
11 https://doi.org/10.1006/jmre.1997.1116
12 https://doi.org/10.1016/0005-2795(81)90205-1
13 https://doi.org/10.1016/0014-5793(88)81148-7
14 https://doi.org/10.1016/0022-2836(85)90134-2
15 https://doi.org/10.1016/s1090-7807(02)00014-9
16 https://doi.org/10.1017/s0033583598003436
17 https://doi.org/10.1073/pnas.0800256105
18 https://doi.org/10.1089/106652701753216521
19 https://doi.org/10.1093/bioinformatics/19.2.315
20 https://doi.org/10.1093/bioinformatics/btp225
21 https://doi.org/10.1107/s0907444909042073
22 https://doi.org/10.1126/science.1183649
23 https://doi.org/10.1137/05062754x
24 https://doi.org/10.1137/080733103
25 https://doi.org/10.1137/090759392
26 https://doi.org/10.1137/1038003
27 https://doi.org/10.1137/s1052623495283024
28 https://doi.org/10.1137/s1052623495288350
29 https://doi.org/10.1142/s0219720011005276
30 https://doi.org/10.2307/1968654
31 schema:datePublished 2012
32 schema:datePublishedReg 2012-01-01
33 schema:description All practical contemporary protein NMR structure determination methods use molecular dynamics coupled with a simulated annealing schedule. The objective of these methods is to minimize the error of deviating from the NOE distance constraints. However, this objective function is highly nonconvex and, consequently, difficult to optimize. Euclidean distance geometry methods based on semidefinite programming (SDP) provide a natural formulation for this problem. However, complexity of SDP solvers and ambiguous distance constraints are major challenges to this approach. The contribution of this paper is to provide a new SDP formulation of this problem that overcomes these two issues for the first time. We model the protein as a set of intersecting two- and three-dimensional cliques, then we adapt and extend a technique called semidefinite facial reduction to reduce the SDP problem size to approximately one quarter of the size of the original problem. The reduced SDP problem can not only be solved approximately 100 times faster, but is also resistant to numerical problems from having erroneous and inexact distance bounds.
34 schema:editor N894b74906c6540aebfe4a1bc13dea984
35 schema:genre chapter
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf Nec2f0814dd484ea59ce01696c6f1a473
39 schema:name Protein Structure by Semidefinite Facial Reduction
40 schema:pagination 1-11
41 schema:productId N4cfc8a86b60a4019a3f6dd8be4c8bbe6
42 N4efe1fbc21f3499e87b222de6f75b137
43 Nebbc803e1c3442fca4cd36cd713a2fec
44 schema:publisher Nf118d33da8984d7b96c5d90e42cd3b08
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051681702
46 https://doi.org/10.1007/978-3-642-29627-7_1
47 schema:sdDatePublished 2019-04-15T19:12
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N1603cd82f0384fdcb71b4b44ee56cbe0
50 schema:url http://link.springer.com/10.1007/978-3-642-29627-7_1
51 sgo:license sg:explorer/license/
52 sgo:sdDataset chapters
53 rdf:type schema:Chapter
54 N1603cd82f0384fdcb71b4b44ee56cbe0 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N3d92e402529943dab8332c095c43529b rdf:first sg:person.0607736332.94
57 rdf:rest N731f7e91cd404ba5aa1ab4cada8f33c5
58 N4cfc8a86b60a4019a3f6dd8be4c8bbe6 schema:name doi
59 schema:value 10.1007/978-3-642-29627-7_1
60 rdf:type schema:PropertyValue
61 N4efe1fbc21f3499e87b222de6f75b137 schema:name dimensions_id
62 schema:value pub.1051681702
63 rdf:type schema:PropertyValue
64 N638822118b3a4c1381ca6fb17e4534a8 rdf:first sg:person.0754727434.08
65 rdf:rest Nfedc73a143f04081831b0dd56980e9b7
66 N731f7e91cd404ba5aa1ab4cada8f33c5 rdf:first sg:person.016450557552.96
67 rdf:rest Nfff55f10025b4cd5aed5b11f3f785a76
68 N83b2d859457242f9898af6e12f631cdb rdf:first sg:person.07545373531.09
69 rdf:rest N3d92e402529943dab8332c095c43529b
70 N894b74906c6540aebfe4a1bc13dea984 rdf:first N97caa553031d4d1a8c81b79adc57ea67
71 rdf:rest rdf:nil
72 N97caa553031d4d1a8c81b79adc57ea67 schema:familyName Chor
73 schema:givenName Benny
74 rdf:type schema:Person
75 Nebbc803e1c3442fca4cd36cd713a2fec schema:name readcube_id
76 schema:value f62f78416934dbafa8bd12bd2bfa2865f995980e1b5802005551b5fc525c6336
77 rdf:type schema:PropertyValue
78 Nec2f0814dd484ea59ce01696c6f1a473 schema:isbn 978-3-642-29626-0
79 978-3-642-29627-7
80 schema:name Research in Computational Molecular Biology
81 rdf:type schema:Book
82 Nf118d33da8984d7b96c5d90e42cd3b08 schema:location Berlin, Heidelberg
83 schema:name Springer Berlin Heidelberg
84 rdf:type schema:Organisation
85 Nfedc73a143f04081831b0dd56980e9b7 rdf:first sg:person.01223752130.46
86 rdf:rest N83b2d859457242f9898af6e12f631cdb
87 Nfff55f10025b4cd5aed5b11f3f785a76 rdf:first sg:person.0621576316.79
88 rdf:rest rdf:nil
89 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
90 schema:name Mathematical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
93 schema:name Numerical and Computational Mathematics
94 rdf:type schema:DefinedTerm
95 sg:person.01223752130.46 schema:affiliation https://www.grid.ac/institutes/grid.457351.1
96 schema:familyName Krislock
97 schema:givenName Nathan
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223752130.46
99 rdf:type schema:Person
100 sg:person.016450557552.96 schema:affiliation https://www.grid.ac/institutes/grid.21100.32
101 schema:familyName Donaldson
102 schema:givenName Logan
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016450557552.96
104 rdf:type schema:Person
105 sg:person.0607736332.94 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
106 schema:familyName Wolkowicz
107 schema:givenName Henry
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607736332.94
109 rdf:type schema:Person
110 sg:person.0621576316.79 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
111 schema:familyName Li
112 schema:givenName Ming
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621576316.79
114 rdf:type schema:Person
115 sg:person.07545373531.09 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
116 schema:familyName Ghodsi
117 schema:givenName Ali
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07545373531.09
119 rdf:type schema:Person
120 sg:person.0754727434.08 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
121 schema:familyName Alipanahi
122 schema:givenName Babak
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754727434.08
124 rdf:type schema:Person
125 sg:pub.10.1007/s10107-002-0347-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004848160
126 https://doi.org/10.1007/s10107-002-0347-5
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s10107-008-0256-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049198426
129 https://doi.org/10.1007/s10107-008-0256-3
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s10858-005-2195-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010906927
132 https://doi.org/10.1007/s10858-005-2195-0
133 rdf:type schema:CreativeWork
134 sg:pub.10.1023/a:1023514106644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027486475
135 https://doi.org/10.1023/a:1023514106644
136 rdf:type schema:CreativeWork
137 sg:pub.10.1385/1-59259-809-9:353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016740745
138 https://doi.org/10.1385/1-59259-809-9:353
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1002/pro.5560050609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052000147
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1006/jmbi.1997.1284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011642887
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1006/jmre.1997.1116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048754314
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/0005-2795(81)90205-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027307485
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/0014-5793(88)81148-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008677183
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/0022-2836(85)90134-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035083567
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/s1090-7807(02)00014-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017921984
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1017/s0033583598003436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054077673
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1073/pnas.0800256105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014826453
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1089/106652701753216521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204906
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1093/bioinformatics/19.2.315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000478652
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1093/bioinformatics/btp225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007977523
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1107/s0907444909042073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018458004
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1126/science.1183649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062461352
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1137/05062754x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062846110
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1137/080733103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062855072
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1137/090759392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062856341
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1137/1038003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062863973
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1137/s1052623495283024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062883493
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1137/s1052623495288350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062883507
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1142/s0219720011005276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063005013
181 rdf:type schema:CreativeWork
182 https://doi.org/10.2307/1968654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674069
183 rdf:type schema:CreativeWork
184 https://www.grid.ac/institutes/grid.21100.32 schema:alternateName York University
185 schema:name Department of Biology, York University, Toronto, Ontario, Canada
186 rdf:type schema:Organization
187 https://www.grid.ac/institutes/grid.457351.1 schema:alternateName Inria Grenoble - Rhône-Alpes research centre
188 schema:name INRIA Grenoble Rhône-Alpes, France
189 rdf:type schema:Organization
190 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
191 schema:name David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
192 Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada
193 Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...