Ontology type: schema:Chapter
2012
AUTHORSMathieu Chouchane , Sébastien Paris , François Le Gland , Mustapha Ouladsine
ABSTRACTIn this paper, we present a novel stochastic optimization algorithm based on the rare events simulation framework for sensors deployment in underwater systems. More precisely, we focus on finding the best spatio-temporal deployment of a set of sensors in order to maximize the detection probability of an intelligent and randomly moving target in an area under surveillance. Based on generalized splitting technique with a dedicated Gibbs sampler, our approach does not require any state-space discretization and rely on the evolutionary framework. More... »
PAGES243-254
Evolutionary Computation in Combinatorial Optimization
ISBN
978-3-642-29123-4
978-3-642-29124-1
http://scigraph.springernature.com/pub.10.1007/978-3-642-29124-1_21
DOIhttp://dx.doi.org/10.1007/978-3-642-29124-1_21
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1008145367
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Laboratoire des Sciences de l'Information et des Syst\u00e8mes",
"id": "https://www.grid.ac/institutes/grid.462878.7",
"name": [
"LSIS, Aix-Marseille University, Domaine universitaire de Saint-J\u00e9r\u00f4me, Avenue Escadrille Normandie Niemen, 13397\u00a0Marseille Cedex 20, France"
],
"type": "Organization"
},
"familyName": "Chouchane",
"givenName": "Mathieu",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire des Sciences de l'Information et des Syst\u00e8mes",
"id": "https://www.grid.ac/institutes/grid.462878.7",
"name": [
"LSIS, Aix-Marseille University, Domaine universitaire de Saint-J\u00e9r\u00f4me, Avenue Escadrille Normandie Niemen, 13397\u00a0Marseille Cedex 20, France"
],
"type": "Organization"
},
"familyName": "Paris",
"givenName": "S\u00e9bastien",
"id": "sg:person.014371661147.40",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014371661147.40"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Rennes 1",
"id": "https://www.grid.ac/institutes/grid.410368.8",
"name": [
"INRIA Rennes, Campus de Beaulieu, 263 avenue du G\u00e9n\u00e9ral Leclerc, 35042\u00a0Rennes Cedex, France"
],
"type": "Organization"
},
"familyName": "Le Gland",
"givenName": "Fran\u00e7ois",
"id": "sg:person.07757427211.15",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07757427211.15"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire des Sciences de l'Information et des Syst\u00e8mes",
"id": "https://www.grid.ac/institutes/grid.462878.7",
"name": [
"LSIS, Aix-Marseille University, Domaine universitaire de Saint-J\u00e9r\u00f4me, Avenue Escadrille Normandie Niemen, 13397\u00a0Marseille Cedex 20, France"
],
"type": "Organization"
},
"familyName": "Ouladsine",
"givenName": "Mustapha",
"id": "sg:person.011127446123.00",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011127446123.00"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s11009-008-9073-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002752311",
"https://doi.org/10.1007/s11009-008-9073-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10479-005-5724-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015375022",
"https://doi.org/10.1007/s10479-005-5724-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10479-005-5724-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015375022",
"https://doi.org/10.1007/s10479-005-5724-z"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1162/evco.1993.1.1.1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019143107"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/(sici)1520-6750(199606)43:4<463::aid-nav1>3.0.co;2-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024122526"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/(sici)1520-6750(199804)45:3<243::aid-nav1>3.0.co;2-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025612229"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ejor.2010.10.028",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030604887"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.patcog.2008.03.016",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032686957"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-12239-2_42",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037211453",
"https://doi.org/10.1007/978-3-642-12239-2_42"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-12239-2_42",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037211453",
"https://doi.org/10.1007/978-3-642-12239-2_42"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11009-008-9101-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047480297",
"https://doi.org/10.1007/s11009-008-9101-7"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/taes.2003.1261132",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061484503"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5267/j.ijiec.2010.03.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072733999"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5711/morj.6.4.19",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1073082172"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icec.1996.542381",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095520794"
],
"type": "CreativeWork"
}
],
"datePublished": "2012",
"datePublishedReg": "2012-01-01",
"description": "In this paper, we present a novel stochastic optimization algorithm based on the rare events simulation framework for sensors deployment in underwater systems. More precisely, we focus on finding the best spatio-temporal deployment of a set of sensors in order to maximize the detection probability of an intelligent and randomly moving target in an area under surveillance. Based on generalized splitting technique with a dedicated Gibbs sampler, our approach does not require any state-space discretization and rely on the evolutionary framework.",
"editor": [
{
"familyName": "Hao",
"givenName": "Jin-Kao",
"type": "Person"
},
{
"familyName": "Middendorf",
"givenName": "Martin",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-29124-1_21",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-29123-4",
"978-3-642-29124-1"
],
"name": "Evolutionary Computation in Combinatorial Optimization",
"type": "Book"
},
"name": "Splitting Method for Spatio-temporal Sensors Deployment in Underwater Systems",
"pagination": "243-254",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-29124-1_21"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"26ce742f4d48ecf09d97e23f8f45a7237915deb19042b1dcf49348233f16261a"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1008145367"
]
}
],
"publisher": {
"location": "Berlin, Heidelberg",
"name": "Springer Berlin Heidelberg",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-29124-1_21",
"https://app.dimensions.ai/details/publication/pub.1008145367"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T00:46",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000248.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-642-29124-1_21"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-29124-1_21'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-29124-1_21'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-29124-1_21'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-29124-1_21'
This table displays all metadata directly associated to this object as RDF triples.
136 TRIPLES
23 PREDICATES
40 URIs
20 LITERALS
8 BLANK NODES