Recovering Geometric Detail by Octree Normal Maps View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Wenshan Fan , Bin Wang , Bin Chan , Jean-Claude Paul , Jiaguang Sun

ABSTRACT

This paper presents a new approach for constructing normal maps that capture high-frequency geometric detail from dense models of arbitrary topology and are applied to the simplified version of the same models generated by any simplification method to mimic the same level of detail. A variant of loose octree scheme is used to optimally calculate the mesh normals. A B-spline surface fitting based method is employed to solve the issue of thin plate. A memory saving Breadth-First Search (BFS) order construction is designed. Furthermore, a speedup scheme that exploits access coherence is used to accelerate filtering operation. The proposed method can synthesize good quality images of models with extremely high number of polygons while using much less memory and render at much higher frame rate. More... »

PAGES

62-73

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-29050-3_6

DOI

http://dx.doi.org/10.1007/978-3-642-29050-3_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011021445


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tsinghua National Laboratory for Information Science and Technology, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, China", 
            "Beijing Aerospace Control Center, China", 
            "Department of Computer Science and Technology, Tsinghua University, China", 
            "Key Laboratory for Information System Security, Ministry of Education, China", 
            "Tsinghua National Laboratory for Information Science and Technology, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Wenshan", 
        "id": "sg:person.014642057131.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014642057131.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Bin", 
        "id": "sg:person.012070506555.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012070506555.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Hong Kong, China", 
          "id": "http://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "The University of Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chan", 
        "givenName": "Bin", 
        "id": "sg:person.01046166437.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046166437.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INRIA, France", 
          "id": "http://www.grid.ac/institutes/grid.5328.c", 
          "name": [
            "INRIA, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paul", 
        "givenName": "Jean-Claude", 
        "id": "sg:person.011611527417.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011611527417.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Jiaguang", 
        "id": "sg:person.011411464635.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011411464635.59"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "This paper presents a new approach for constructing normal maps that capture high-frequency geometric detail from dense models of arbitrary topology and are applied to the simplified version of the same models generated by any simplification method to mimic the same level of detail. A variant of loose octree scheme is used to optimally calculate the mesh normals. A B-spline surface fitting based method is employed to solve the issue of thin plate. A memory saving Breadth-First Search (BFS) order construction is designed. Furthermore, a speedup scheme that exploits access coherence is used to accelerate filtering operation. The proposed method can synthesize good quality images of models with extremely high number of polygons while using much less memory and render at much higher frame rate.", 
    "editor": [
      {
        "familyName": "Pan", 
        "givenName": "Zhigeng", 
        "type": "Person"
      }, 
      {
        "familyName": "Cheok", 
        "givenName": "Adrian David", 
        "type": "Person"
      }, 
      {
        "familyName": "M\u00fcller", 
        "givenName": "Wolfgang", 
        "type": "Person"
      }, 
      {
        "familyName": "Chang", 
        "givenName": "Maiga", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhang", 
        "givenName": "Mingmin", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-29050-3_6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-29049-7", 
        "978-3-642-29050-3"
      ], 
      "name": "Transactions on Edutainment VII", 
      "type": "Book"
    }, 
    "keywords": [
      "geometric details", 
      "spline surface fitting", 
      "arbitrary topology", 
      "normal maps", 
      "simplification method", 
      "filtering operation", 
      "thin plates", 
      "mesh normals", 
      "dense model", 
      "simplified version", 
      "surface fitting", 
      "less memory", 
      "scheme", 
      "order construction", 
      "new approach", 
      "same model", 
      "model", 
      "topology", 
      "maps", 
      "fitting", 
      "polygons", 
      "version", 
      "detail", 
      "approach", 
      "construction", 
      "operation", 
      "number", 
      "good quality images", 
      "variants", 
      "same level", 
      "issues", 
      "coherence", 
      "plate", 
      "memory", 
      "higher number", 
      "quality images", 
      "normals", 
      "rate", 
      "images", 
      "frame rate", 
      "levels", 
      "high frame rate", 
      "speedup scheme", 
      "method", 
      "paper", 
      "high-frequency geometric detail", 
      "loose octree scheme", 
      "octree scheme", 
      "Breadth-First Search (BFS) order construction", 
      "Search (BFS) order construction", 
      "access coherence", 
      "Octree Normal Maps"
    ], 
    "name": "Recovering Geometric Detail by Octree Normal Maps", 
    "pagination": "62-73", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011021445"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-29050-3_6"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-29050-3_6", 
      "https://app.dimensions.ai/details/publication/pub.1011021445"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_16.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-29050-3_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-29050-3_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-29050-3_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-29050-3_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-29050-3_6'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      23 PREDICATES      78 URIs      71 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-29050-3_6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nbe09818779724696af50f5e1b17b08a0
4 schema:datePublished 2012
5 schema:datePublishedReg 2012-01-01
6 schema:description This paper presents a new approach for constructing normal maps that capture high-frequency geometric detail from dense models of arbitrary topology and are applied to the simplified version of the same models generated by any simplification method to mimic the same level of detail. A variant of loose octree scheme is used to optimally calculate the mesh normals. A B-spline surface fitting based method is employed to solve the issue of thin plate. A memory saving Breadth-First Search (BFS) order construction is designed. Furthermore, a speedup scheme that exploits access coherence is used to accelerate filtering operation. The proposed method can synthesize good quality images of models with extremely high number of polygons while using much less memory and render at much higher frame rate.
7 schema:editor N68fe5c90d9f94728bcd2fdbc549869fc
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nd5d5a808eefc4eb5bbd4594d51551466
12 schema:keywords Breadth-First Search (BFS) order construction
13 Octree Normal Maps
14 Search (BFS) order construction
15 access coherence
16 approach
17 arbitrary topology
18 coherence
19 construction
20 dense model
21 detail
22 filtering operation
23 fitting
24 frame rate
25 geometric details
26 good quality images
27 high frame rate
28 high-frequency geometric detail
29 higher number
30 images
31 issues
32 less memory
33 levels
34 loose octree scheme
35 maps
36 memory
37 mesh normals
38 method
39 model
40 new approach
41 normal maps
42 normals
43 number
44 octree scheme
45 operation
46 order construction
47 paper
48 plate
49 polygons
50 quality images
51 rate
52 same level
53 same model
54 scheme
55 simplification method
56 simplified version
57 speedup scheme
58 spline surface fitting
59 surface fitting
60 thin plates
61 topology
62 variants
63 version
64 schema:name Recovering Geometric Detail by Octree Normal Maps
65 schema:pagination 62-73
66 schema:productId N51dc004b7ead400aa1456a936abc2270
67 Nd8fdbb06be2d4ddb8c24ec315864ddf9
68 schema:publisher N742e55e8088145f4bd8a22fe9bd399d4
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011021445
70 https://doi.org/10.1007/978-3-642-29050-3_6
71 schema:sdDatePublished 2022-01-01T19:09
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N8a50c9011a1e4adba26bc6f822ce664b
74 schema:url https://doi.org/10.1007/978-3-642-29050-3_6
75 sgo:license sg:explorer/license/
76 sgo:sdDataset chapters
77 rdf:type schema:Chapter
78 N03ab11114fdc49d4900302ae9de02955 rdf:first N805b82e350a24da599ca5868ea7c2b18
79 rdf:rest N50b62e06243f459a918eab91f78df34b
80 N091d3087f1874a63a2ec6468833ff463 rdf:first N427bda80faa747c99019d7e19053dea8
81 rdf:rest N598efce0d52f4298a562df253d82ac6f
82 N2ad2e99a0a23472f923e270ede58bfe6 rdf:first sg:person.011611527417.75
83 rdf:rest Nc26081552dc247d586cbc3d57527840a
84 N427bda80faa747c99019d7e19053dea8 schema:familyName Chang
85 schema:givenName Maiga
86 rdf:type schema:Person
87 N50b62e06243f459a918eab91f78df34b rdf:first N9cd75f7057e44676bd0258f814faa091
88 rdf:rest N091d3087f1874a63a2ec6468833ff463
89 N51dc004b7ead400aa1456a936abc2270 schema:name dimensions_id
90 schema:value pub.1011021445
91 rdf:type schema:PropertyValue
92 N598efce0d52f4298a562df253d82ac6f rdf:first Nf569333d70a1438d842c7d3246421da5
93 rdf:rest rdf:nil
94 N68fe5c90d9f94728bcd2fdbc549869fc rdf:first N973a9592ebb545bb969a5c185fea910a
95 rdf:rest N03ab11114fdc49d4900302ae9de02955
96 N742e55e8088145f4bd8a22fe9bd399d4 schema:name Springer Nature
97 rdf:type schema:Organisation
98 N748840f7e4a84c529f92e3a102500a91 rdf:first sg:person.012070506555.85
99 rdf:rest Nb27be8545e234be4a428d128ae8e7712
100 N805b82e350a24da599ca5868ea7c2b18 schema:familyName Cheok
101 schema:givenName Adrian David
102 rdf:type schema:Person
103 N8a50c9011a1e4adba26bc6f822ce664b schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N973a9592ebb545bb969a5c185fea910a schema:familyName Pan
106 schema:givenName Zhigeng
107 rdf:type schema:Person
108 N9cd75f7057e44676bd0258f814faa091 schema:familyName Müller
109 schema:givenName Wolfgang
110 rdf:type schema:Person
111 Nb27be8545e234be4a428d128ae8e7712 rdf:first sg:person.01046166437.76
112 rdf:rest N2ad2e99a0a23472f923e270ede58bfe6
113 Nbe09818779724696af50f5e1b17b08a0 rdf:first sg:person.014642057131.35
114 rdf:rest N748840f7e4a84c529f92e3a102500a91
115 Nc26081552dc247d586cbc3d57527840a rdf:first sg:person.011411464635.59
116 rdf:rest rdf:nil
117 Nd5d5a808eefc4eb5bbd4594d51551466 schema:isbn 978-3-642-29049-7
118 978-3-642-29050-3
119 schema:name Transactions on Edutainment VII
120 rdf:type schema:Book
121 Nd8fdbb06be2d4ddb8c24ec315864ddf9 schema:name doi
122 schema:value 10.1007/978-3-642-29050-3_6
123 rdf:type schema:PropertyValue
124 Nf569333d70a1438d842c7d3246421da5 schema:familyName Zhang
125 schema:givenName Mingmin
126 rdf:type schema:Person
127 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
128 schema:name Information and Computing Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
131 schema:name Artificial Intelligence and Image Processing
132 rdf:type schema:DefinedTerm
133 sg:person.01046166437.76 schema:affiliation grid-institutes:grid.194645.b
134 schema:familyName Chan
135 schema:givenName Bin
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046166437.76
137 rdf:type schema:Person
138 sg:person.011411464635.59 schema:affiliation grid-institutes:grid.12527.33
139 schema:familyName Sun
140 schema:givenName Jiaguang
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011411464635.59
142 rdf:type schema:Person
143 sg:person.011611527417.75 schema:affiliation grid-institutes:grid.5328.c
144 schema:familyName Paul
145 schema:givenName Jean-Claude
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011611527417.75
147 rdf:type schema:Person
148 sg:person.012070506555.85 schema:affiliation grid-institutes:grid.12527.33
149 schema:familyName Wang
150 schema:givenName Bin
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012070506555.85
152 rdf:type schema:Person
153 sg:person.014642057131.35 schema:affiliation grid-institutes:grid.12527.33
154 schema:familyName Fan
155 schema:givenName Wenshan
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014642057131.35
157 rdf:type schema:Person
158 grid-institutes:grid.12527.33 schema:alternateName School of Software, Tsinghua University, China
159 Tsinghua National Laboratory for Information Science and Technology, China
160 schema:name Beijing Aerospace Control Center, China
161 Department of Computer Science and Technology, Tsinghua University, China
162 Key Laboratory for Information System Security, Ministry of Education, China
163 School of Software, Tsinghua University, China
164 Tsinghua National Laboratory for Information Science and Technology, China
165 rdf:type schema:Organization
166 grid-institutes:grid.194645.b schema:alternateName The University of Hong Kong, China
167 schema:name The University of Hong Kong, China
168 rdf:type schema:Organization
169 grid-institutes:grid.5328.c schema:alternateName INRIA, France
170 schema:name INRIA, France
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...