Circle of Friend Query in Geo-Social Networks View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2012

AUTHORS

Weimo Liu , Weiwei Sun , Chunan Chen , Yan Huang , Yinan Jing , Kunjie Chen

ABSTRACT

Location-Based Services (LBSs) are becoming more social and Social Networks (SNs) are increasingly including location components. Geo-Social Networks are bridging the gap between virtual and physical social networks. In this paper, we propose a new type of query called Circle of Friend Query (CoFQ) to allow finding a group of friends in a Geo-Social network whose members are close to each other both socially and geographically. More specifically, the members in the group have tight social relationships with each other and they are constrained in a small region in the geospatial space as measured by a “diameter” that integrates the two aspects. We prove that algorithms for finding the Circle of Friends (CoF) of size k is NP-hard and then propose an ε-approximate solution. The proposed ε-approximate algorithm is guaranteed to produce a group of friends with diameter within ε of the optimal solution. The performance of our algorithm is tested on the real dataset from Foursquare. The experimental results show that our algorithm is efficient and scalable: the ε-approximate algorithm runs in polynomial time and retrieves around 95% of the optimal answers for small ε. More... »

PAGES

126-137

References to SciGraph publications

Book

TITLE

Database Systems for Advanced Applications

ISBN

978-3-642-29034-3
978-3-642-29035-0

From Grant

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-29035-0_9

DOI

http://dx.doi.org/10.1007/978-3-642-29035-0_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042752662


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "School of Computer Science, Fudan University, Shanghai, 201203, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Weimo", 
        "id": "sg:person.07557276153.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07557276153.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "School of Computer Science, Fudan University, Shanghai, 201203, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Weiwei", 
        "id": "sg:person.07523442453.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07523442453.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "School of Computer Science, Fudan University, Shanghai, 201203, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Chunan", 
        "id": "sg:person.011152237153.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011152237153.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Texas", 
          "id": "https://www.grid.ac/institutes/grid.266869.5", 
          "name": [
            "Department of Computer Science and Engineering, University of North Texas, Denton, TX\u00a076203-5017, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Yan", 
        "id": "sg:person.01133501720.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133501720.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "School of Computer Science, Fudan University, Shanghai, 201203, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jing", 
        "givenName": "Yinan", 
        "id": "sg:person.015137651331.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015137651331.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "School of Computer Science, Fudan University, Shanghai, 201203, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Kunjie", 
        "id": "sg:person.013342560553.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013342560553.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1869790.1869861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011145608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.016132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013982839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.016132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013982839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-20149-3_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023829894", 
          "https://doi.org/10.1007/978-3-642-20149-3_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-20149-3_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023829894", 
          "https://doi.org/10.1007/978-3-642-20149-3_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1367497.1367586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028603266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/602259.602266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042817816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/320248.320255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049019897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0196-6774(91)90022-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049650028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1867699.1867707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052645847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2004.1320006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093638042"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Location-Based Services (LBSs) are becoming more social and Social Networks (SNs) are increasingly including location components. Geo-Social Networks are bridging the gap between virtual and physical social networks. In this paper, we propose a new type of query called Circle of Friend Query (CoFQ) to allow finding a group of friends in a Geo-Social network whose members are close to each other both socially and geographically. More specifically, the members in the group have tight social relationships with each other and they are constrained in a small region in the geospatial space as measured by a \u201cdiameter\u201d that integrates the two aspects. We prove that algorithms for finding the Circle of Friends (CoF) of size k is NP-hard and then propose an \u03b5-approximate solution. The proposed \u03b5-approximate algorithm is guaranteed to produce a group of friends with diameter within \u03b5 of the optimal solution. The performance of our algorithm is tested on the real dataset from Foursquare. The experimental results show that our algorithm is efficient and scalable: the \u03b5-approximate algorithm runs in polynomial time and retrieves around 95% of the optimal answers for small \u03b5.", 
    "editor": [
      {
        "familyName": "Lee", 
        "givenName": "Sang-goo", 
        "type": "Person"
      }, 
      {
        "familyName": "Peng", 
        "givenName": "Zhiyong", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhou", 
        "givenName": "Xiaofang", 
        "type": "Person"
      }, 
      {
        "familyName": "Moon", 
        "givenName": "Yang-Sae", 
        "type": "Person"
      }, 
      {
        "familyName": "Unland", 
        "givenName": "Rainer", 
        "type": "Person"
      }, 
      {
        "familyName": "Yoo", 
        "givenName": "Jaesoo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-29035-0_9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5000467", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-642-29034-3", 
        "978-3-642-29035-0"
      ], 
      "name": "Database Systems for Advanced Applications", 
      "type": "Book"
    }, 
    "name": "Circle of Friend Query in Geo-Social Networks", 
    "pagination": "126-137", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-29035-0_9"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cba6442c942914ea69952e28030139ba4cd4c5ce9d3527664f2663cc8bc115c9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042752662"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-29035-0_9", 
      "https://app.dimensions.ai/details/publication/pub.1042752662"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000269.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-29035-0_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-29035-0_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-29035-0_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-29035-0_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-29035-0_9'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-29035-0_9 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N5bb63c6ccbfd4e17baf75bf19a980994
4 schema:citation sg:pub.10.1007/978-3-642-20149-3_5
5 sg:pub.10.1038/30918
6 https://doi.org/10.1016/0196-6774(91)90022-q
7 https://doi.org/10.1103/physreve.64.016132
8 https://doi.org/10.1109/icde.2004.1320006
9 https://doi.org/10.1145/1367497.1367586
10 https://doi.org/10.1145/1867699.1867707
11 https://doi.org/10.1145/1869790.1869861
12 https://doi.org/10.1145/320248.320255
13 https://doi.org/10.1145/602259.602266
14 schema:datePublished 2012
15 schema:datePublishedReg 2012-01-01
16 schema:description Location-Based Services (LBSs) are becoming more social and Social Networks (SNs) are increasingly including location components. Geo-Social Networks are bridging the gap between virtual and physical social networks. In this paper, we propose a new type of query called Circle of Friend Query (CoFQ) to allow finding a group of friends in a Geo-Social network whose members are close to each other both socially and geographically. More specifically, the members in the group have tight social relationships with each other and they are constrained in a small region in the geospatial space as measured by a “diameter” that integrates the two aspects. We prove that algorithms for finding the Circle of Friends (CoF) of size k is NP-hard and then propose an ε-approximate solution. The proposed ε-approximate algorithm is guaranteed to produce a group of friends with diameter within ε of the optimal solution. The performance of our algorithm is tested on the real dataset from Foursquare. The experimental results show that our algorithm is efficient and scalable: the ε-approximate algorithm runs in polynomial time and retrieves around 95% of the optimal answers for small ε.
17 schema:editor Nd92fb1f29f824429b8174b6578d31cbf
18 schema:genre chapter
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf N9252bdb914ee4006925a03eaa238eb88
22 schema:name Circle of Friend Query in Geo-Social Networks
23 schema:pagination 126-137
24 schema:productId N4002587332914c138afcf10f622c2177
25 Neaba1ec0ea054e13a733acad0b4f0f81
26 Nff223d0109444dac8e4f6bb67f37bc69
27 schema:publisher Nc55b719732b748d38d10dc43ef968ab3
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042752662
29 https://doi.org/10.1007/978-3-642-29035-0_9
30 schema:sdDatePublished 2019-04-15T14:27
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Nfd7ea6007e514339b637b1075b0f95a1
33 schema:url http://link.springer.com/10.1007/978-3-642-29035-0_9
34 sgo:license sg:explorer/license/
35 sgo:sdDataset chapters
36 rdf:type schema:Chapter
37 N00c5dd9f1f5548b19c5d298516853c85 rdf:first sg:person.015137651331.42
38 rdf:rest N51ce74e361074d63aa0aa5900b525143
39 N0ab86c3cee3147e3bf2eb173483bdafe rdf:first Nde4cc6a2532d4cffb824713d8616c808
40 rdf:rest Na87d1366a2364d13ba5260cec4637292
41 N11e9d5e7bf03417f86cc7429ba3570b4 rdf:first sg:person.01133501720.03
42 rdf:rest N00c5dd9f1f5548b19c5d298516853c85
43 N2c8530b644094beeb92dbd5b12d0aab4 rdf:first Nceb28bf65b5c4e93a37775b4d83ce927
44 rdf:rest N99786122d3924c498a206aa0af9e8c68
45 N4002587332914c138afcf10f622c2177 schema:name dimensions_id
46 schema:value pub.1042752662
47 rdf:type schema:PropertyValue
48 N5094a75f40754330bda1074b529a1a9f rdf:first sg:person.07523442453.12
49 rdf:rest N53cb3730b7ce4619bb75f2a8065aa1b5
50 N51ce74e361074d63aa0aa5900b525143 rdf:first sg:person.013342560553.82
51 rdf:rest rdf:nil
52 N53cb3730b7ce4619bb75f2a8065aa1b5 rdf:first sg:person.011152237153.24
53 rdf:rest N11e9d5e7bf03417f86cc7429ba3570b4
54 N5bb63c6ccbfd4e17baf75bf19a980994 rdf:first sg:person.07557276153.49
55 rdf:rest N5094a75f40754330bda1074b529a1a9f
56 N634779c2184c489a8d14378e70b61ebd rdf:first N88ba798e06834b259922f5d0da328286
57 rdf:rest N2c8530b644094beeb92dbd5b12d0aab4
58 N7a2c02ea5a50489ab0bf4fb7c4b400e4 schema:familyName Moon
59 schema:givenName Yang-Sae
60 rdf:type schema:Person
61 N88ba798e06834b259922f5d0da328286 schema:familyName Peng
62 schema:givenName Zhiyong
63 rdf:type schema:Person
64 N9252bdb914ee4006925a03eaa238eb88 schema:isbn 978-3-642-29034-3
65 978-3-642-29035-0
66 schema:name Database Systems for Advanced Applications
67 rdf:type schema:Book
68 N99786122d3924c498a206aa0af9e8c68 rdf:first N7a2c02ea5a50489ab0bf4fb7c4b400e4
69 rdf:rest N0ab86c3cee3147e3bf2eb173483bdafe
70 Na87d1366a2364d13ba5260cec4637292 rdf:first Ndaf3e5975929436cad47a286f14ba406
71 rdf:rest rdf:nil
72 Nc55b719732b748d38d10dc43ef968ab3 schema:location Berlin, Heidelberg
73 schema:name Springer Berlin Heidelberg
74 rdf:type schema:Organisation
75 Nceb28bf65b5c4e93a37775b4d83ce927 schema:familyName Zhou
76 schema:givenName Xiaofang
77 rdf:type schema:Person
78 Nd92fb1f29f824429b8174b6578d31cbf rdf:first Neba0c8e409784813a6ea17e78e9cabff
79 rdf:rest N634779c2184c489a8d14378e70b61ebd
80 Ndaf3e5975929436cad47a286f14ba406 schema:familyName Yoo
81 schema:givenName Jaesoo
82 rdf:type schema:Person
83 Nde4cc6a2532d4cffb824713d8616c808 schema:familyName Unland
84 schema:givenName Rainer
85 rdf:type schema:Person
86 Neaba1ec0ea054e13a733acad0b4f0f81 schema:name readcube_id
87 schema:value cba6442c942914ea69952e28030139ba4cd4c5ce9d3527664f2663cc8bc115c9
88 rdf:type schema:PropertyValue
89 Neba0c8e409784813a6ea17e78e9cabff schema:familyName Lee
90 schema:givenName Sang-goo
91 rdf:type schema:Person
92 Nfd7ea6007e514339b637b1075b0f95a1 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 Nff223d0109444dac8e4f6bb67f37bc69 schema:name doi
95 schema:value 10.1007/978-3-642-29035-0_9
96 rdf:type schema:PropertyValue
97 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
98 schema:name Information and Computing Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
101 schema:name Information Systems
102 rdf:type schema:DefinedTerm
103 sg:grant.5000467 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-642-29035-0_9
104 rdf:type schema:MonetaryGrant
105 sg:person.011152237153.24 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
106 schema:familyName Chen
107 schema:givenName Chunan
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011152237153.24
109 rdf:type schema:Person
110 sg:person.01133501720.03 schema:affiliation https://www.grid.ac/institutes/grid.266869.5
111 schema:familyName Huang
112 schema:givenName Yan
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133501720.03
114 rdf:type schema:Person
115 sg:person.013342560553.82 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
116 schema:familyName Chen
117 schema:givenName Kunjie
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013342560553.82
119 rdf:type schema:Person
120 sg:person.015137651331.42 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
121 schema:familyName Jing
122 schema:givenName Yinan
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015137651331.42
124 rdf:type schema:Person
125 sg:person.07523442453.12 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
126 schema:familyName Sun
127 schema:givenName Weiwei
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07523442453.12
129 rdf:type schema:Person
130 sg:person.07557276153.49 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
131 schema:familyName Liu
132 schema:givenName Weimo
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07557276153.49
134 rdf:type schema:Person
135 sg:pub.10.1007/978-3-642-20149-3_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023829894
136 https://doi.org/10.1007/978-3-642-20149-3_5
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
139 https://doi.org/10.1038/30918
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/0196-6774(91)90022-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1049650028
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physreve.64.016132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013982839
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/icde.2004.1320006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093638042
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1145/1367497.1367586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028603266
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1145/1867699.1867707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052645847
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1145/1869790.1869861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011145608
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1145/320248.320255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049019897
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1145/602259.602266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042817816
156 rdf:type schema:CreativeWork
157 https://www.grid.ac/institutes/grid.266869.5 schema:alternateName University of North Texas
158 schema:name Department of Computer Science and Engineering, University of North Texas, Denton, TX 76203-5017, USA
159 rdf:type schema:Organization
160 https://www.grid.ac/institutes/grid.8547.e schema:alternateName Fudan University
161 schema:name School of Computer Science, Fudan University, Shanghai, 201203, China
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...