Self-Organizing Maps versus Growing Neural Gas in Detecting Data Outliers for Security Applications View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Zorana Banković , David Fraga , Juan Carlos Vallejo , José M. Moya

ABSTRACT

Our previous work has demonstrated that clustering-based outlier detection approach offers numerous advantages for detecting attacks in Wireless Sensor Networks, above all adaptability and the possibility to detect unknown attacks. In this work we provide a comparison of Self-organizing maps (SOM) and Growing Neural Gas (GNG) used for this purpose. Our results reveal that GNG is superior to SOM when it comes to the level of presence of anomalous data during the training, as GNG is capable of detecting the attack even with small portion of normal data during the training, while SOM need the majority of the training data to be normal in order to detect it. On the other hand, after both being trained with normal data, SOM performs somewhat better as the attack becomes more aggressive, i.e. it exhibits higher detection rate, although both are capable of detecting the attack in each case. More... »

PAGES

89-96

References to SciGraph publications

Book

TITLE

Hybrid Artificial Intelligent Systems

ISBN

978-3-642-28930-9
978-3-642-28931-6

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-28931-6_9

DOI

http://dx.doi.org/10.1007/978-3-642-28931-6_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051788384


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "ETSI Telecomunicaci\u00f3n, Univ. Polit\u00e9cnica de Madrid, Av. Complutense 30, 28040\u00a0Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bankovi\u0107", 
        "givenName": "Zorana", 
        "id": "sg:person.013534273534.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013534273534.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "ETSI Telecomunicaci\u00f3n, Univ. Polit\u00e9cnica de Madrid, Av. Complutense 30, 28040\u00a0Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fraga", 
        "givenName": "David", 
        "id": "sg:person.01263647634.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263647634.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "ETSI Telecomunicaci\u00f3n, Univ. Polit\u00e9cnica de Madrid, Av. Complutense 30, 28040\u00a0Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vallejo", 
        "givenName": "Juan Carlos", 
        "id": "sg:person.0606356734.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606356734.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "ETSI Telecomunicaci\u00f3n, Univ. Polit\u00e9cnica de Madrid, Av. Complutense 30, 28040\u00a0Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moya", 
        "givenName": "Jos\u00e9 M.", 
        "id": "sg:person.07662217004.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662217004.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10489-008-0132-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004318936", 
          "https://doi.org/10.1007/s10489-008-0132-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10489-008-0132-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004318936", 
          "https://doi.org/10.1007/s10489-008-0132-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(97)00068-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005216996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1460877.1460903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037108305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icw.2005.16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093713975"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Our previous work has demonstrated that clustering-based outlier detection approach offers numerous advantages for detecting attacks in Wireless Sensor Networks, above all adaptability and the possibility to detect unknown attacks. In this work we provide a comparison of Self-organizing maps (SOM) and Growing Neural Gas (GNG) used for this purpose. Our results reveal that GNG is superior to SOM when it comes to the level of presence of anomalous data during the training, as GNG is capable of detecting the attack even with small portion of normal data during the training, while SOM need the majority of the training data to be normal in order to detect it. On the other hand, after both being trained with normal data, SOM performs somewhat better as the attack becomes more aggressive, i.e. it exhibits higher detection rate, although both are capable of detecting the attack in each case.", 
    "editor": [
      {
        "familyName": "Corchado", 
        "givenName": "Emilio", 
        "type": "Person"
      }, 
      {
        "familyName": "Sn\u00e1\u0161el", 
        "givenName": "V\u00e1clav", 
        "type": "Person"
      }, 
      {
        "familyName": "Abraham", 
        "givenName": "Ajith", 
        "type": "Person"
      }, 
      {
        "familyName": "Wo\u017aniak", 
        "givenName": "Micha\u0142", 
        "type": "Person"
      }, 
      {
        "familyName": "Gra\u00f1a", 
        "givenName": "Manuel", 
        "type": "Person"
      }, 
      {
        "familyName": "Cho", 
        "givenName": "Sung-Bae", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-28931-6_9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-28930-9", 
        "978-3-642-28931-6"
      ], 
      "name": "Hybrid Artificial Intelligent Systems", 
      "type": "Book"
    }, 
    "name": "Self-Organizing Maps versus Growing Neural Gas in Detecting Data Outliers for Security Applications", 
    "pagination": "89-96", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-28931-6_9"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f6b0d2d5318cb26a98e30064ef2876eae8e4f8eb02b70cb6a3b9a51d3f65e009"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051788384"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-28931-6_9", 
      "https://app.dimensions.ai/details/publication/pub.1051788384"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000275.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-28931-6_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-28931-6_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-28931-6_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-28931-6_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-28931-6_9'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-28931-6_9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N8c92cf79da9c412396e01345ce47cc92
4 schema:citation sg:pub.10.1007/s10489-008-0132-0
5 https://doi.org/10.1016/s0925-2312(97)00068-4
6 https://doi.org/10.1109/icw.2005.16
7 https://doi.org/10.1145/1460877.1460903
8 schema:datePublished 2012
9 schema:datePublishedReg 2012-01-01
10 schema:description Our previous work has demonstrated that clustering-based outlier detection approach offers numerous advantages for detecting attacks in Wireless Sensor Networks, above all adaptability and the possibility to detect unknown attacks. In this work we provide a comparison of Self-organizing maps (SOM) and Growing Neural Gas (GNG) used for this purpose. Our results reveal that GNG is superior to SOM when it comes to the level of presence of anomalous data during the training, as GNG is capable of detecting the attack even with small portion of normal data during the training, while SOM need the majority of the training data to be normal in order to detect it. On the other hand, after both being trained with normal data, SOM performs somewhat better as the attack becomes more aggressive, i.e. it exhibits higher detection rate, although both are capable of detecting the attack in each case.
11 schema:editor N579e237fc74c4d49bd38ea6ae7462a09
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf Na046fae10b1748f0a894b860166f5d77
16 schema:name Self-Organizing Maps versus Growing Neural Gas in Detecting Data Outliers for Security Applications
17 schema:pagination 89-96
18 schema:productId N1bb14214943542479a7bfa6d2df4630b
19 N2c5ce4b3b5be4015b7f394811f12b15c
20 N920ee05d6dba4a5ab2e97da10e9ee5a7
21 schema:publisher N54febbf0f86d4a41a297e84675ca5058
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051788384
23 https://doi.org/10.1007/978-3-642-28931-6_9
24 schema:sdDatePublished 2019-04-15T20:09
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N6c35a6faa5dc45d899f036e0a52dfe3e
27 schema:url http://link.springer.com/10.1007/978-3-642-28931-6_9
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N0ee3b558f56448beaf6e50b93a61e39e schema:familyName Corchado
32 schema:givenName Emilio
33 rdf:type schema:Person
34 N11034aba93994b71a90116d421f12e14 schema:familyName Cho
35 schema:givenName Sung-Bae
36 rdf:type schema:Person
37 N1b002ab715714e0ba8764f26f754745f rdf:first N5514a453c4cf47988fbe69242e4cdef2
38 rdf:rest Nd763f750d307426287f83db5aa6bf042
39 N1bb14214943542479a7bfa6d2df4630b schema:name dimensions_id
40 schema:value pub.1051788384
41 rdf:type schema:PropertyValue
42 N221de82b075349c3af75d99c4729a39a rdf:first Nc4f7b7c5370841c693cad3c6d4b50c7a
43 rdf:rest Nd4cbacd620ba4368bfb6650a19cbb6ca
44 N2c5ce4b3b5be4015b7f394811f12b15c schema:name readcube_id
45 schema:value f6b0d2d5318cb26a98e30064ef2876eae8e4f8eb02b70cb6a3b9a51d3f65e009
46 rdf:type schema:PropertyValue
47 N2d90a41ea9d041c09f8e15460b603628 rdf:first sg:person.07662217004.56
48 rdf:rest rdf:nil
49 N54febbf0f86d4a41a297e84675ca5058 schema:location Berlin, Heidelberg
50 schema:name Springer Berlin Heidelberg
51 rdf:type schema:Organisation
52 N5514a453c4cf47988fbe69242e4cdef2 schema:familyName Graña
53 schema:givenName Manuel
54 rdf:type schema:Person
55 N579e237fc74c4d49bd38ea6ae7462a09 rdf:first N0ee3b558f56448beaf6e50b93a61e39e
56 rdf:rest N900970c260e04233b70e63ca8863c69b
57 N6c35a6faa5dc45d899f036e0a52dfe3e schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N800ddaf17a864434a56d96a6febd1e39 rdf:first sg:person.01263647634.13
60 rdf:rest Nd29cbeb55c154a31821a611f5eb84a36
61 N8c92cf79da9c412396e01345ce47cc92 rdf:first sg:person.013534273534.80
62 rdf:rest N800ddaf17a864434a56d96a6febd1e39
63 N900970c260e04233b70e63ca8863c69b rdf:first Na98f9c4429a04ea39bfe8a939fce7a0f
64 rdf:rest N221de82b075349c3af75d99c4729a39a
65 N920ee05d6dba4a5ab2e97da10e9ee5a7 schema:name doi
66 schema:value 10.1007/978-3-642-28931-6_9
67 rdf:type schema:PropertyValue
68 Na046fae10b1748f0a894b860166f5d77 schema:isbn 978-3-642-28930-9
69 978-3-642-28931-6
70 schema:name Hybrid Artificial Intelligent Systems
71 rdf:type schema:Book
72 Na98f9c4429a04ea39bfe8a939fce7a0f schema:familyName Snášel
73 schema:givenName Václav
74 rdf:type schema:Person
75 Nc4f7b7c5370841c693cad3c6d4b50c7a schema:familyName Abraham
76 schema:givenName Ajith
77 rdf:type schema:Person
78 Nd29cbeb55c154a31821a611f5eb84a36 rdf:first sg:person.0606356734.19
79 rdf:rest N2d90a41ea9d041c09f8e15460b603628
80 Nd4cbacd620ba4368bfb6650a19cbb6ca rdf:first Ne789214c65974f43b63b4d1e84b9c53c
81 rdf:rest N1b002ab715714e0ba8764f26f754745f
82 Nd763f750d307426287f83db5aa6bf042 rdf:first N11034aba93994b71a90116d421f12e14
83 rdf:rest rdf:nil
84 Ne789214c65974f43b63b4d1e84b9c53c schema:familyName Woźniak
85 schema:givenName Michał
86 rdf:type schema:Person
87 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
88 schema:name Information and Computing Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
91 schema:name Artificial Intelligence and Image Processing
92 rdf:type schema:DefinedTerm
93 sg:person.01263647634.13 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
94 schema:familyName Fraga
95 schema:givenName David
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263647634.13
97 rdf:type schema:Person
98 sg:person.013534273534.80 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
99 schema:familyName Banković
100 schema:givenName Zorana
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013534273534.80
102 rdf:type schema:Person
103 sg:person.0606356734.19 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
104 schema:familyName Vallejo
105 schema:givenName Juan Carlos
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606356734.19
107 rdf:type schema:Person
108 sg:person.07662217004.56 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
109 schema:familyName Moya
110 schema:givenName José M.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662217004.56
112 rdf:type schema:Person
113 sg:pub.10.1007/s10489-008-0132-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004318936
114 https://doi.org/10.1007/s10489-008-0132-0
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/s0925-2312(97)00068-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005216996
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/icw.2005.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093713975
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1145/1460877.1460903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037108305
121 rdf:type schema:CreativeWork
122 https://www.grid.ac/institutes/grid.5690.a schema:alternateName Technical University of Madrid
123 schema:name ETSI Telecomunicación, Univ. Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...