Ontology type: schema:Chapter
2012
AUTHORSEnrique de la Cal , José R. Villar , Marco García-Tamargo , Javier Sedano
ABSTRACTThe undesired effects of data gathered from real world can be produced by the noise in the process, the bias of the sensors and the presence of hysteresis, among other uncertainty sources. Data gathered by this way are called Low Quality Data (LQD). Thus, uncertainty representation tools are needed for using in learning models with this kind of data. This work presents a method to represent the uncertainty and an approach for learning white box Equation Based Models (EBM). The proficiency of the representations with different noise levels and fitness functions typology is compared. The numerical results show that the use of the described objectives improves the proficiency of the algorithms. It has been also proved that each meta-heuristic determines the typology of fitness function. More... »
PAGES339-349
Hybrid Artificial Intelligent Systems
ISBN
978-3-642-28930-9
978-3-642-28931-6
http://scigraph.springernature.com/pub.10.1007/978-3-642-28931-6_33
DOIhttp://dx.doi.org/10.1007/978-3-642-28931-6_33
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1037485867
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Computer Science Department, University of Oviedo, Campus de Viesques s/n, 33204\u00a0Gij\u00f3n, Spain"
],
"type": "Organization"
},
"familyName": "de la Cal",
"givenName": "Enrique",
"id": "sg:person.016056436767.91",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016056436767.91"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Computer Science Department, University of Oviedo, Campus de Viesques s/n, 33204\u00a0Gij\u00f3n, Spain"
],
"type": "Organization"
},
"familyName": "Villar",
"givenName": "Jos\u00e9 R.",
"id": "sg:person.015655732472.57",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015655732472.57"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Computer Science Department, University of Oviedo, Campus de Viesques s/n, 33204\u00a0Gij\u00f3n, Spain"
],
"type": "Organization"
},
"familyName": "Garc\u00eda-Tamargo",
"givenName": "Marco",
"id": "sg:person.013502106005.63",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013502106005.63"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Technological Institute of Castilla y Le\u00f3n",
"id": "https://www.grid.ac/institutes/grid.493418.3",
"name": [
"Instituto Tecnol\u00f3gico de Castilla y Le\u00f3n, Lopez Bravo 70, Pol.Ind.Villalonqu\u00e9jar, 09001\u00a0Burgos, Spain"
],
"type": "Organization"
},
"familyName": "Sedano",
"givenName": "Javier",
"id": "sg:person.012345130667.82",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012345130667.82"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/s0020-0255(01)00146-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009095292"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-21219-2_9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015312613",
"https://doi.org/10.1007/978-3-642-21219-2_9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-21219-2_9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015312613",
"https://doi.org/10.1007/978-3-642-21219-2_9"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.engappai.2008.07.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021647687"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.fss.2009.04.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022681384"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.fss.2007.09.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023059341"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.fss.2009.03.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031710262"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-45984-7_4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040814660",
"https://doi.org/10.1007/3-540-45984-7_4"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijar.2008.06.005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044359442"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-21222-2_11",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050761615",
"https://doi.org/10.1007/978-3-642-21222-2_11"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ins.2007.09.029",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051053213"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-46239-2_19",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052918662",
"https://doi.org/10.1007/978-3-540-46239-2_19"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-46239-2_19",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052918662",
"https://doi.org/10.1007/978-3-540-46239-2_19"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/4235.843495",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061172039"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/64.393137",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061205052"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/91.811235",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061247967"
],
"type": "CreativeWork"
}
],
"datePublished": "2012",
"datePublishedReg": "2012-01-01",
"description": "The undesired effects of data gathered from real world can be produced by the noise in the process, the bias of the sensors and the presence of hysteresis, among other uncertainty sources. Data gathered by this way are called Low Quality Data (LQD). Thus, uncertainty representation tools are needed for using in learning models with this kind of data. This work presents a method to represent the uncertainty and an approach for learning white box Equation Based Models (EBM). The proficiency of the representations with different noise levels and fitness functions typology is compared. The numerical results show that the use of the described objectives improves the proficiency of the algorithms. It has been also proved that each meta-heuristic determines the typology of fitness function.",
"editor": [
{
"familyName": "Corchado",
"givenName": "Emilio",
"type": "Person"
},
{
"familyName": "Sn\u00e1\u0161el",
"givenName": "V\u00e1clav",
"type": "Person"
},
{
"familyName": "Abraham",
"givenName": "Ajith",
"type": "Person"
},
{
"familyName": "Wo\u017aniak",
"givenName": "Micha\u0142",
"type": "Person"
},
{
"familyName": "Gra\u00f1a",
"givenName": "Manuel",
"type": "Person"
},
{
"familyName": "Cho",
"givenName": "Sung-Bae",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-28931-6_33",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-28930-9",
"978-3-642-28931-6"
],
"name": "Hybrid Artificial Intelligent Systems",
"type": "Book"
},
"name": "Comparison of Fuzzy Functions for Low Quality Data GAP Algorithms",
"pagination": "339-349",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-28931-6_33"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"b2914fdc92377fdc5e7ec926f5f1a4e3cd79c54a2a41baf1ac96c49eb8dc1f45"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1037485867"
]
}
],
"publisher": {
"location": "Berlin, Heidelberg",
"name": "Springer Berlin Heidelberg",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-28931-6_33",
"https://app.dimensions.ai/details/publication/pub.1037485867"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T15:22",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000266.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-642-28931-6_33"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-28931-6_33'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-28931-6_33'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-28931-6_33'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-28931-6_33'
This table displays all metadata directly associated to this object as RDF triples.
160 TRIPLES
23 PREDICATES
41 URIs
20 LITERALS
8 BLANK NODES