On the Public Indifferentiability and Correlation Intractability of the 6-Round Feistel Construction View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2012

AUTHORS

Avradip Mandal , Jacques Patarin , Yannick Seurin

ABSTRACT

We show that the Feistel construction with six rounds and random round functions is publicly indifferentiable from a random invertible permutation (a result that is not known to hold for full indifferentiability). Public indifferentiability (pub-indifferentiability for short) is a variant of indifferentiability introduced by Yoneyama et al. [29] and Dodis et al. [12] where the simulator knows all queries made by the distinguisher to the primitive it tries to simulate, and is useful to argue the security of cryptosystems where all the queries to the ideal primitive are public (as e.g. in many digital signature schemes). To prove the result, we introduce a new and simpler variant of indifferentiability, that we call sequential indifferentiability (seq-indifferentiability for short) and show that this notion is in fact equivalent to pub-indifferentiability for stateless ideal primitives. We then prove that the 6-round Feistel construction is seq-indifferentiable from a random invertible permutation. We also observe that sequential indifferentiability implies correlation intractability, so that the Feistel construction with six rounds and random round functions yields a correlation intractable invertible permutation, a notion we define analogously to correlation intractable functions introduced by Canetti et al. [4]. More... »

PAGES

285-302

Book

TITLE

Theory of Cryptography

ISBN

978-3-642-28913-2
978-3-642-28914-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-28914-9_16

DOI

http://dx.doi.org/10.1007/978-3-642-28914-9_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018791890


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Luxembourg, Luxembourg", 
          "id": "http://www.grid.ac/institutes/grid.16008.3f", 
          "name": [
            "University of Luxembourg, Luxembourg"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mandal", 
        "givenName": "Avradip", 
        "id": "sg:person.010716613427.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716613427.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Versailles, France", 
          "id": "http://www.grid.ac/institutes/grid.12832.3a", 
          "name": [
            "University of Versailles, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patarin", 
        "givenName": "Jacques", 
        "id": "sg:person.012254315647.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012254315647.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ANSSI, Paris, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "ANSSI, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seurin", 
        "givenName": "Yannick", 
        "id": "sg:person.011724731171.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724731171.01"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "We show that the Feistel construction with six rounds and random round functions is publicly indifferentiable from a random invertible permutation (a result that is not known to hold for full indifferentiability). Public indifferentiability (pub-indifferentiability for short) is a variant of indifferentiability introduced by Yoneyama et al.\u00a0[29] and Dodis et al.\u00a0[12] where the simulator knows all queries made by the distinguisher to the primitive it tries to simulate, and is useful to argue the security of cryptosystems where all the queries to the ideal primitive are public (as e.g. in many digital signature schemes). To prove the result, we introduce a new and simpler variant of indifferentiability, that we call sequential indifferentiability (seq-indifferentiability for short) and show that this notion is in fact equivalent to pub-indifferentiability for stateless ideal primitives. We then prove that the 6-round Feistel construction is seq-indifferentiable from a random invertible permutation. We also observe that sequential indifferentiability implies correlation intractability, so that the Feistel construction with six rounds and random round functions yields a correlation intractable invertible permutation, a notion we define analogously to correlation intractable functions introduced by Canetti et al.\u00a0[4].", 
    "editor": [
      {
        "familyName": "Cramer", 
        "givenName": "Ronald", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-28914-9_16", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-28913-2", 
        "978-3-642-28914-9"
      ], 
      "name": "Theory of Cryptography", 
      "type": "Book"
    }, 
    "keywords": [
      "correlation intractability", 
      "Feistel construction", 
      "round function", 
      "security of cryptosystems", 
      "ideal primitive", 
      "Canetti et al", 
      "queries", 
      "primitives", 
      "indifferentiability", 
      "cryptosystem", 
      "simple variant", 
      "intractability", 
      "construction", 
      "permutations", 
      "Dodis", 
      "simulator", 
      "distinguisher", 
      "security", 
      "rounds", 
      "function", 
      "variants", 
      "et al", 
      "notion", 
      "intractable function", 
      "results", 
      "fact", 
      "al"
    ], 
    "name": "On the Public Indifferentiability and Correlation Intractability of the 6-Round Feistel Construction", 
    "pagination": "285-302", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018791890"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-28914-9_16"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-28914-9_16", 
      "https://app.dimensions.ai/details/publication/pub.1018791890"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_316.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-28914-9_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-28914-9_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-28914-9_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-28914-9_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-28914-9_16'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      22 PREDICATES      52 URIs      45 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-28914-9_16 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author N9572a82986894b4f83f94b816e128423
4 schema:datePublished 2012
5 schema:datePublishedReg 2012-01-01
6 schema:description We show that the Feistel construction with six rounds and random round functions is publicly indifferentiable from a random invertible permutation (a result that is not known to hold for full indifferentiability). Public indifferentiability (pub-indifferentiability for short) is a variant of indifferentiability introduced by Yoneyama et al. [29] and Dodis et al. [12] where the simulator knows all queries made by the distinguisher to the primitive it tries to simulate, and is useful to argue the security of cryptosystems where all the queries to the ideal primitive are public (as e.g. in many digital signature schemes). To prove the result, we introduce a new and simpler variant of indifferentiability, that we call sequential indifferentiability (seq-indifferentiability for short) and show that this notion is in fact equivalent to pub-indifferentiability for stateless ideal primitives. We then prove that the 6-round Feistel construction is seq-indifferentiable from a random invertible permutation. We also observe that sequential indifferentiability implies correlation intractability, so that the Feistel construction with six rounds and random round functions yields a correlation intractable invertible permutation, a notion we define analogously to correlation intractable functions introduced by Canetti et al. [4].
7 schema:editor Nb8c457eb94384755a0e7a315fd263fa1
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf Na8019ec707484f3781e372ec40919c8d
11 schema:keywords Canetti et al
12 Dodis
13 Feistel construction
14 al
15 construction
16 correlation intractability
17 cryptosystem
18 distinguisher
19 et al
20 fact
21 function
22 ideal primitive
23 indifferentiability
24 intractability
25 intractable function
26 notion
27 permutations
28 primitives
29 queries
30 results
31 round function
32 rounds
33 security
34 security of cryptosystems
35 simple variant
36 simulator
37 variants
38 schema:name On the Public Indifferentiability and Correlation Intractability of the 6-Round Feistel Construction
39 schema:pagination 285-302
40 schema:productId Nab785cf46e2445f8a9152c185aafb7de
41 Nbf79d2c79ef940ce9b5bdbd00c08cc64
42 schema:publisher N13cabf16b142483e86de8addb2101ced
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018791890
44 https://doi.org/10.1007/978-3-642-28914-9_16
45 schema:sdDatePublished 2022-12-01T06:51
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nc201478b9bc443dea6334fc3be72dc88
48 schema:url https://doi.org/10.1007/978-3-642-28914-9_16
49 sgo:license sg:explorer/license/
50 sgo:sdDataset chapters
51 rdf:type schema:Chapter
52 N13cabf16b142483e86de8addb2101ced schema:name Springer Nature
53 rdf:type schema:Organisation
54 N499500898467470991cc8d7ac18067d5 schema:familyName Cramer
55 schema:givenName Ronald
56 rdf:type schema:Person
57 N68cdaa71f00041fcbfa16849c66e0f3e rdf:first sg:person.011724731171.01
58 rdf:rest rdf:nil
59 N9572a82986894b4f83f94b816e128423 rdf:first sg:person.010716613427.52
60 rdf:rest Ne5cf20747e924d81829174c4de947214
61 Na8019ec707484f3781e372ec40919c8d schema:isbn 978-3-642-28913-2
62 978-3-642-28914-9
63 schema:name Theory of Cryptography
64 rdf:type schema:Book
65 Nab785cf46e2445f8a9152c185aafb7de schema:name doi
66 schema:value 10.1007/978-3-642-28914-9_16
67 rdf:type schema:PropertyValue
68 Nb8c457eb94384755a0e7a315fd263fa1 rdf:first N499500898467470991cc8d7ac18067d5
69 rdf:rest rdf:nil
70 Nbf79d2c79ef940ce9b5bdbd00c08cc64 schema:name dimensions_id
71 schema:value pub.1018791890
72 rdf:type schema:PropertyValue
73 Nc201478b9bc443dea6334fc3be72dc88 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Ne5cf20747e924d81829174c4de947214 rdf:first sg:person.012254315647.07
76 rdf:rest N68cdaa71f00041fcbfa16849c66e0f3e
77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
78 schema:name Information and Computing Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
81 schema:name Data Format
82 rdf:type schema:DefinedTerm
83 sg:person.010716613427.52 schema:affiliation grid-institutes:grid.16008.3f
84 schema:familyName Mandal
85 schema:givenName Avradip
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716613427.52
87 rdf:type schema:Person
88 sg:person.011724731171.01 schema:affiliation grid-institutes:None
89 schema:familyName Seurin
90 schema:givenName Yannick
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724731171.01
92 rdf:type schema:Person
93 sg:person.012254315647.07 schema:affiliation grid-institutes:grid.12832.3a
94 schema:familyName Patarin
95 schema:givenName Jacques
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012254315647.07
97 rdf:type schema:Person
98 grid-institutes:None schema:alternateName ANSSI, Paris, France
99 schema:name ANSSI, Paris, France
100 rdf:type schema:Organization
101 grid-institutes:grid.12832.3a schema:alternateName University of Versailles, France
102 schema:name University of Versailles, France
103 rdf:type schema:Organization
104 grid-institutes:grid.16008.3f schema:alternateName University of Luxembourg, Luxembourg
105 schema:name University of Luxembourg, Luxembourg
106 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...