Role of Physico-chemical Properties of Amino Acids in Protein’s Structural Organization: A Network Perspective View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Dhriti Sengupta , Sudip Kundu

ABSTRACT

The three-dimensional structure of a protein can be described as a graph where nodes represent residues and interactions between them are edges. We have constructed protein contact networks at different length-scales for different interaction strength cutoffs. The largest connected component of short-range networks exhibit a highly cooperative transition, while long- and all-range networks (more similar to each other), have less cooperativity. The hydrophobic subnetworks in all- and long-range networks have similar phase transition behaviours while hydrophilic and charged networks don’t. Hydrophobic subclusters in long- and all-range networks exhibit higher occurrence of assortativity and hence higher communication ability in transmitting information within a protein. The highly cliquish hydrophobic nodes in long- and short-range networks play a significant role in bridging and stabilizing distantly placed residues during protein folding. We have also observed a significant dominance of charged residues cliques in short-range networks. More... »

PAGES

74-81

Book

TITLE

Information Processign in Cells and Tissues

ISBN

978-3-642-28791-6
978-3-642-28792-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-28792-3_11

DOI

http://dx.doi.org/10.1007/978-3-642-28792-3_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029419665


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Calcutta", 
          "id": "https://www.grid.ac/institutes/grid.59056.3f", 
          "name": [
            "Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 APC Road, Kolkata, 700009, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sengupta", 
        "givenName": "Dhriti", 
        "id": "sg:person.0730313605.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730313605.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Calcutta", 
          "id": "https://www.grid.ac/institutes/grid.59056.3f", 
          "name": [
            "Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 APC Road, Kolkata, 700009, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kundu", 
        "givenName": "Sudip", 
        "id": "sg:person.0667720624.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667720624.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.0501043102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002183245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.208701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012572068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.208701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012572068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b903019k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018368668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2004.10.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019364803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.75.2.559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019519181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2006.03.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020346950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10826069908544933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021508317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.122076099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021741329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.febslet.2007.05.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025515124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030189369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2003.08.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036026326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(03)75000-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040755744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpj.2009.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043603447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpj.2009.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043603447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.106.098004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044107791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2004.08.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048435270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.105.064485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050658725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.061910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060728621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.061910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060728621"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "The three-dimensional structure of a protein can be described as a graph where nodes represent residues and interactions between them are edges. We have constructed protein contact networks at different length-scales for different interaction strength cutoffs. The largest connected component of short-range networks exhibit a highly cooperative transition, while long- and all-range networks (more similar to each other), have less cooperativity. The hydrophobic subnetworks in all- and long-range networks have similar phase transition behaviours while hydrophilic and charged networks don\u2019t. Hydrophobic subclusters in long- and all-range networks exhibit higher occurrence of assortativity and hence higher communication ability in transmitting information within a protein. The highly cliquish hydrophobic nodes in long- and short-range networks play a significant role in bridging and stabilizing distantly placed residues during protein folding. We have also observed a significant dominance of charged residues cliques in short-range networks.", 
    "editor": [
      {
        "familyName": "Lones", 
        "givenName": "Michael A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Smith", 
        "givenName": "Stephen L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Teichmann", 
        "givenName": "Sarah", 
        "type": "Person"
      }, 
      {
        "familyName": "Naef", 
        "givenName": "Felix", 
        "type": "Person"
      }, 
      {
        "familyName": "Walker", 
        "givenName": "James A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Trefzer", 
        "givenName": "Martin A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-28792-3_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-28791-6", 
        "978-3-642-28792-3"
      ], 
      "name": "Information Processign in Cells and Tissues", 
      "type": "Book"
    }, 
    "name": "Role of Physico-chemical Properties of Amino Acids in Protein\u2019s Structural Organization: A Network Perspective", 
    "pagination": "74-81", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-28792-3_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8c2679aee09e9bff52d44c03a5fea508f3a18ff1c3aa485b0f3b57688fce9252"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029419665"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-28792-3_11", 
      "https://app.dimensions.ai/details/publication/pub.1029419665"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000261.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-28792-3_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-28792-3_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-28792-3_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-28792-3_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-28792-3_11'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      23 PREDICATES      44 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-28792-3_11 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N2f13f268639e49a286ba9fb8038fb3d9
4 schema:citation https://doi.org/10.1016/j.bpj.2009.07.016
5 https://doi.org/10.1016/j.febslet.2007.05.021
6 https://doi.org/10.1016/j.jmb.2003.08.061
7 https://doi.org/10.1016/j.jmb.2004.10.055
8 https://doi.org/10.1016/j.physa.2004.08.055
9 https://doi.org/10.1016/j.physa.2006.03.056
10 https://doi.org/10.1016/s0006-3495(03)75000-0
11 https://doi.org/10.1039/b903019k
12 https://doi.org/10.1073/pnas.0501043102
13 https://doi.org/10.1073/pnas.122076099
14 https://doi.org/10.1073/pnas.75.2.559
15 https://doi.org/10.1080/10826069908544933
16 https://doi.org/10.1093/bioinformatics/btm257
17 https://doi.org/10.1103/physreve.65.061910
18 https://doi.org/10.1103/physrevlett.89.208701
19 https://doi.org/10.1529/biophysj.105.064485
20 https://doi.org/10.1529/biophysj.106.098004
21 schema:datePublished 2012
22 schema:datePublishedReg 2012-01-01
23 schema:description The three-dimensional structure of a protein can be described as a graph where nodes represent residues and interactions between them are edges. We have constructed protein contact networks at different length-scales for different interaction strength cutoffs. The largest connected component of short-range networks exhibit a highly cooperative transition, while long- and all-range networks (more similar to each other), have less cooperativity. The hydrophobic subnetworks in all- and long-range networks have similar phase transition behaviours while hydrophilic and charged networks don’t. Hydrophobic subclusters in long- and all-range networks exhibit higher occurrence of assortativity and hence higher communication ability in transmitting information within a protein. The highly cliquish hydrophobic nodes in long- and short-range networks play a significant role in bridging and stabilizing distantly placed residues during protein folding. We have also observed a significant dominance of charged residues cliques in short-range networks.
24 schema:editor N3be0e260b42440d7a2b1c006c98b338b
25 schema:genre chapter
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf Ne11c138fbde64249aa26d106af44a022
29 schema:name Role of Physico-chemical Properties of Amino Acids in Protein’s Structural Organization: A Network Perspective
30 schema:pagination 74-81
31 schema:productId N22b758cba9734a47ba5c34724c0c0746
32 N77975fbed4134b509941b44e0de29a00
33 N84a397a883004de3a494bb2dc4f50343
34 schema:publisher Nee28dacc222542229510d15f3bb52dca
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029419665
36 https://doi.org/10.1007/978-3-642-28792-3_11
37 schema:sdDatePublished 2019-04-15T20:06
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Ncf48e019779445048915fb0d27ea81c7
40 schema:url http://link.springer.com/10.1007/978-3-642-28792-3_11
41 sgo:license sg:explorer/license/
42 sgo:sdDataset chapters
43 rdf:type schema:Chapter
44 N06f2c165ff754ef0a4f71716d80a55d9 schema:familyName Lones
45 schema:givenName Michael A.
46 rdf:type schema:Person
47 N0e715764262345b28e057c844fad249c schema:familyName Naef
48 schema:givenName Felix
49 rdf:type schema:Person
50 N22b758cba9734a47ba5c34724c0c0746 schema:name readcube_id
51 schema:value 8c2679aee09e9bff52d44c03a5fea508f3a18ff1c3aa485b0f3b57688fce9252
52 rdf:type schema:PropertyValue
53 N2885c8f8c5334650b438922199ddc5d4 schema:familyName Trefzer
54 schema:givenName Martin A.
55 rdf:type schema:Person
56 N2b62f2515d284ddc91a2efb609d127cb rdf:first N5ae958e29bd746cbb85b19274b5b86df
57 rdf:rest N86c455ebe39945039d11d8f05d01907d
58 N2f13f268639e49a286ba9fb8038fb3d9 rdf:first sg:person.0730313605.11
59 rdf:rest N5e6042d6b2c64c2f85070ec6ab09a6a4
60 N3be0e260b42440d7a2b1c006c98b338b rdf:first N06f2c165ff754ef0a4f71716d80a55d9
61 rdf:rest Nedc48aa6120f479f9a04a11c18454aa7
62 N5960a5fcc0cd4a0db3232eb5dbc7c0f0 schema:familyName Smith
63 schema:givenName Stephen L.
64 rdf:type schema:Person
65 N5ae958e29bd746cbb85b19274b5b86df schema:familyName Walker
66 schema:givenName James A.
67 rdf:type schema:Person
68 N5e6042d6b2c64c2f85070ec6ab09a6a4 rdf:first sg:person.0667720624.89
69 rdf:rest rdf:nil
70 N718e2ce2bb494e84b4d11e192882947f schema:familyName Teichmann
71 schema:givenName Sarah
72 rdf:type schema:Person
73 N77975fbed4134b509941b44e0de29a00 schema:name dimensions_id
74 schema:value pub.1029419665
75 rdf:type schema:PropertyValue
76 N78893438b0924605a870dd0795a60d93 rdf:first N0e715764262345b28e057c844fad249c
77 rdf:rest N2b62f2515d284ddc91a2efb609d127cb
78 N84a397a883004de3a494bb2dc4f50343 schema:name doi
79 schema:value 10.1007/978-3-642-28792-3_11
80 rdf:type schema:PropertyValue
81 N86c455ebe39945039d11d8f05d01907d rdf:first N2885c8f8c5334650b438922199ddc5d4
82 rdf:rest rdf:nil
83 N88b3212ae65747caaee2025daa04f8c2 rdf:first N718e2ce2bb494e84b4d11e192882947f
84 rdf:rest N78893438b0924605a870dd0795a60d93
85 Ncf48e019779445048915fb0d27ea81c7 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Ne11c138fbde64249aa26d106af44a022 schema:isbn 978-3-642-28791-6
88 978-3-642-28792-3
89 schema:name Information Processign in Cells and Tissues
90 rdf:type schema:Book
91 Nedc48aa6120f479f9a04a11c18454aa7 rdf:first N5960a5fcc0cd4a0db3232eb5dbc7c0f0
92 rdf:rest N88b3212ae65747caaee2025daa04f8c2
93 Nee28dacc222542229510d15f3bb52dca schema:location Berlin, Heidelberg
94 schema:name Springer Berlin Heidelberg
95 rdf:type schema:Organisation
96 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
97 schema:name Biological Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
100 schema:name Biochemistry and Cell Biology
101 rdf:type schema:DefinedTerm
102 sg:person.0667720624.89 schema:affiliation https://www.grid.ac/institutes/grid.59056.3f
103 schema:familyName Kundu
104 schema:givenName Sudip
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667720624.89
106 rdf:type schema:Person
107 sg:person.0730313605.11 schema:affiliation https://www.grid.ac/institutes/grid.59056.3f
108 schema:familyName Sengupta
109 schema:givenName Dhriti
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730313605.11
111 rdf:type schema:Person
112 https://doi.org/10.1016/j.bpj.2009.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043603447
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.febslet.2007.05.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025515124
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.jmb.2003.08.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036026326
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.jmb.2004.10.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019364803
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.physa.2004.08.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048435270
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.physa.2006.03.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020346950
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/s0006-3495(03)75000-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040755744
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1039/b903019k schema:sameAs https://app.dimensions.ai/details/publication/pub.1018368668
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1073/pnas.0501043102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002183245
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1073/pnas.122076099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021741329
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1073/pnas.75.2.559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019519181
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1080/10826069908544933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021508317
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1093/bioinformatics/btm257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030189369
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physreve.65.061910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060728621
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevlett.89.208701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012572068
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1529/biophysj.105.064485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050658725
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1529/biophysj.106.098004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044107791
145 rdf:type schema:CreativeWork
146 https://www.grid.ac/institutes/grid.59056.3f schema:alternateName University of Calcutta
147 schema:name Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 APC Road, Kolkata, 700009, India
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...