2013
AUTHORSChristoph Lofi , Wolf-Tilo Balke
ABSTRACTSkyline queries are well known for their intuitive query formalization and easy to understand semantics when selecting the most interesting database objects in a personalized fashion. They naturally fill the gap between set-based SQL queries and rank-aware database retrieval and thus have emerged in the last few years as a popular tool for personalized retrieval in the database research community. Unfortunately, the Skyline paradigm also exhibits some significant drawbacks. Most prevalent among those problems is the so called “curse of dimensionality” which often leads to unmanageable result set sizes. This flood of query results, usually containing a significant portion of the original database, in turn severely hampers the paradigm’s applicability in real-life systems. In this chapter, we will provide a survey of techniques to remedy this problem by choosing the most interesting objects from the multitude of skyline objects in order to obtain truly manageable and personalized query results. More... »
PAGES15-36
Advanced Query Processing
ISBN
978-3-642-28322-2
978-3-642-28323-9
http://scigraph.springernature.com/pub.10.1007/978-3-642-28323-9_2
DOIhttp://dx.doi.org/10.1007/978-3-642-28323-9_2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1022217950
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information Systems",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Technische Universit\u00e4t Braunschweig, Braunschweig, Germany",
"id": "http://www.grid.ac/institutes/grid.6738.a",
"name": [
"Technische Universit\u00e4t Braunschweig, Braunschweig, Germany"
],
"type": "Organization"
},
"familyName": "Lofi",
"givenName": "Christoph",
"id": "sg:person.011355173745.44",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355173745.44"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Technische Universit\u00e4t Braunschweig, Braunschweig, Germany",
"id": "http://www.grid.ac/institutes/grid.6738.a",
"name": [
"Technische Universit\u00e4t Braunschweig, Braunschweig, Germany"
],
"type": "Organization"
},
"familyName": "Balke",
"givenName": "Wolf-Tilo",
"id": "sg:person.014313642615.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313642615.12"
],
"type": "Person"
}
],
"datePublished": "2013",
"datePublishedReg": "2013-01-01",
"description": "Skyline queries are well known for their intuitive query formalization and easy to understand semantics when selecting the most interesting database objects in a personalized fashion. They naturally fill the gap between set-based SQL queries and rank-aware database retrieval and thus have emerged in the last few years as a popular tool for personalized retrieval in the database research community. Unfortunately, the Skyline paradigm also exhibits some significant drawbacks. Most prevalent among those problems is the so called \u201ccurse of dimensionality\u201d which often leads to unmanageable result set sizes. This flood of query results, usually containing a significant portion of the original database, in turn severely hampers the paradigm\u2019s applicability in real-life systems. In this chapter, we will provide a survey of techniques to remedy this problem by choosing the most interesting objects from the multitude of skyline objects in order to obtain truly manageable and personalized query results.",
"editor": [
{
"familyName": "Catania",
"givenName": "Barbara",
"type": "Person"
},
{
"familyName": "Jain",
"givenName": "Lakhmi C.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-28323-9_2",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-28322-2",
"978-3-642-28323-9"
],
"name": "Advanced Query Processing",
"type": "Book"
},
"keywords": [
"skyline queries",
"query results",
"database research community",
"survey of techniques",
"curse of dimensionality",
"real-life systems",
"personalized retrieval",
"skyline objects",
"SQL queries",
"database retrieval",
"skyline paradigm",
"queries",
"original database",
"research community",
"Pareto set",
"popular tool",
"personalized fashion",
"set size",
"interesting database",
"interesting objects",
"retrieval",
"significant drawbacks",
"objects",
"database",
"semantics",
"formalization",
"curse",
"dimensionality",
"applicability",
"paradigm",
"set",
"drawbacks",
"tool",
"system",
"significant portion",
"technique",
"multitude",
"order",
"results",
"fashion",
"community",
"chapter",
"gap",
"floods",
"size",
"turn",
"survey",
"portion",
"years",
"problem"
],
"name": "On Skyline Queries and How to Choose from Pareto Sets",
"pagination": "15-36",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1022217950"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-28323-9_2"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-28323-9_2",
"https://app.dimensions.ai/details/publication/pub.1022217950"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:30",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_250.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-28323-9_2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-28323-9_2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-28323-9_2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-28323-9_2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-28323-9_2'
This table displays all metadata directly associated to this object as RDF triples.
122 TRIPLES
23 PREDICATES
75 URIs
68 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-28323-9_2 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0806 |
3 | ″ | schema:author | Nd6d2acb1080d49c69b736ac0eee48f80 |
4 | ″ | schema:datePublished | 2013 |
5 | ″ | schema:datePublishedReg | 2013-01-01 |
6 | ″ | schema:description | Skyline queries are well known for their intuitive query formalization and easy to understand semantics when selecting the most interesting database objects in a personalized fashion. They naturally fill the gap between set-based SQL queries and rank-aware database retrieval and thus have emerged in the last few years as a popular tool for personalized retrieval in the database research community. Unfortunately, the Skyline paradigm also exhibits some significant drawbacks. Most prevalent among those problems is the so called “curse of dimensionality” which often leads to unmanageable result set sizes. This flood of query results, usually containing a significant portion of the original database, in turn severely hampers the paradigm’s applicability in real-life systems. In this chapter, we will provide a survey of techniques to remedy this problem by choosing the most interesting objects from the multitude of skyline objects in order to obtain truly manageable and personalized query results. |
7 | ″ | schema:editor | Na1289172e5b845aa8dffcb38a57c387d |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N381907a69d784a059816ad6a8300d308 |
12 | ″ | schema:keywords | Pareto set |
13 | ″ | ″ | SQL queries |
14 | ″ | ″ | applicability |
15 | ″ | ″ | chapter |
16 | ″ | ″ | community |
17 | ″ | ″ | curse |
18 | ″ | ″ | curse of dimensionality |
19 | ″ | ″ | database |
20 | ″ | ″ | database research community |
21 | ″ | ″ | database retrieval |
22 | ″ | ″ | dimensionality |
23 | ″ | ″ | drawbacks |
24 | ″ | ″ | fashion |
25 | ″ | ″ | floods |
26 | ″ | ″ | formalization |
27 | ″ | ″ | gap |
28 | ″ | ″ | interesting database |
29 | ″ | ″ | interesting objects |
30 | ″ | ″ | multitude |
31 | ″ | ″ | objects |
32 | ″ | ″ | order |
33 | ″ | ″ | original database |
34 | ″ | ″ | paradigm |
35 | ″ | ″ | personalized fashion |
36 | ″ | ″ | personalized retrieval |
37 | ″ | ″ | popular tool |
38 | ″ | ″ | portion |
39 | ″ | ″ | problem |
40 | ″ | ″ | queries |
41 | ″ | ″ | query results |
42 | ″ | ″ | real-life systems |
43 | ″ | ″ | research community |
44 | ″ | ″ | results |
45 | ″ | ″ | retrieval |
46 | ″ | ″ | semantics |
47 | ″ | ″ | set |
48 | ″ | ″ | set size |
49 | ″ | ″ | significant drawbacks |
50 | ″ | ″ | significant portion |
51 | ″ | ″ | size |
52 | ″ | ″ | skyline objects |
53 | ″ | ″ | skyline paradigm |
54 | ″ | ″ | skyline queries |
55 | ″ | ″ | survey |
56 | ″ | ″ | survey of techniques |
57 | ″ | ″ | system |
58 | ″ | ″ | technique |
59 | ″ | ″ | tool |
60 | ″ | ″ | turn |
61 | ″ | ″ | years |
62 | ″ | schema:name | On Skyline Queries and How to Choose from Pareto Sets |
63 | ″ | schema:pagination | 15-36 |
64 | ″ | schema:productId | N8194314ffc434814ab340998ffaba437 |
65 | ″ | ″ | N929c0990e7074f58bc725ad61883039d |
66 | ″ | schema:publisher | Nb86d751af92f47c7a76c1d585d50a93d |
67 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1022217950 |
68 | ″ | ″ | https://doi.org/10.1007/978-3-642-28323-9_2 |
69 | ″ | schema:sdDatePublished | 2022-06-01T22:30 |
70 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
71 | ″ | schema:sdPublisher | N73532e13c06549a3b3d9d96288020543 |
72 | ″ | schema:url | https://doi.org/10.1007/978-3-642-28323-9_2 |
73 | ″ | sgo:license | sg:explorer/license/ |
74 | ″ | sgo:sdDataset | chapters |
75 | ″ | rdf:type | schema:Chapter |
76 | N21f69b3489484965aa678829a0bcf2c7 | rdf:first | sg:person.014313642615.12 |
77 | ″ | rdf:rest | rdf:nil |
78 | N381907a69d784a059816ad6a8300d308 | schema:isbn | 978-3-642-28322-2 |
79 | ″ | ″ | 978-3-642-28323-9 |
80 | ″ | schema:name | Advanced Query Processing |
81 | ″ | rdf:type | schema:Book |
82 | N4dda281fd8a84d9d953a40cf30b47c70 | rdf:first | Nf7939f249eb44e6face1126537538562 |
83 | ″ | rdf:rest | rdf:nil |
84 | N73532e13c06549a3b3d9d96288020543 | schema:name | Springer Nature - SN SciGraph project |
85 | ″ | rdf:type | schema:Organization |
86 | N8194314ffc434814ab340998ffaba437 | schema:name | dimensions_id |
87 | ″ | schema:value | pub.1022217950 |
88 | ″ | rdf:type | schema:PropertyValue |
89 | N929c0990e7074f58bc725ad61883039d | schema:name | doi |
90 | ″ | schema:value | 10.1007/978-3-642-28323-9_2 |
91 | ″ | rdf:type | schema:PropertyValue |
92 | Na1289172e5b845aa8dffcb38a57c387d | rdf:first | Naf006096230d45cc9865f2643b8f4692 |
93 | ″ | rdf:rest | N4dda281fd8a84d9d953a40cf30b47c70 |
94 | Naf006096230d45cc9865f2643b8f4692 | schema:familyName | Catania |
95 | ″ | schema:givenName | Barbara |
96 | ″ | rdf:type | schema:Person |
97 | Nb86d751af92f47c7a76c1d585d50a93d | schema:name | Springer Nature |
98 | ″ | rdf:type | schema:Organisation |
99 | Nd6d2acb1080d49c69b736ac0eee48f80 | rdf:first | sg:person.011355173745.44 |
100 | ″ | rdf:rest | N21f69b3489484965aa678829a0bcf2c7 |
101 | Nf7939f249eb44e6face1126537538562 | schema:familyName | Jain |
102 | ″ | schema:givenName | Lakhmi C. |
103 | ″ | rdf:type | schema:Person |
104 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
105 | ″ | schema:name | Information and Computing Sciences |
106 | ″ | rdf:type | schema:DefinedTerm |
107 | anzsrc-for:0806 | schema:inDefinedTermSet | anzsrc-for: |
108 | ″ | schema:name | Information Systems |
109 | ″ | rdf:type | schema:DefinedTerm |
110 | sg:person.011355173745.44 | schema:affiliation | grid-institutes:grid.6738.a |
111 | ″ | schema:familyName | Lofi |
112 | ″ | schema:givenName | Christoph |
113 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355173745.44 |
114 | ″ | rdf:type | schema:Person |
115 | sg:person.014313642615.12 | schema:affiliation | grid-institutes:grid.6738.a |
116 | ″ | schema:familyName | Balke |
117 | ″ | schema:givenName | Wolf-Tilo |
118 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313642615.12 |
119 | ″ | rdf:type | schema:Person |
120 | grid-institutes:grid.6738.a | schema:alternateName | Technische Universität Braunschweig, Braunschweig, Germany |
121 | ″ | schema:name | Technische Universität Braunschweig, Braunschweig, Germany |
122 | ″ | rdf:type | schema:Organization |