CloudTSS: A TagSNP Selection Approach on Cloud Computing View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Che-Lun Hung , Yaw-Ling Lin , Guan-Jie Hua , Yu-Chen Hu

ABSTRACT

SNPs are fundamental roles for various applications including medical diagnostic, phylogenies and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Genetic variants that are near each other tend to be inherited together; these regions of linked variants are known as haplotypes. Recently, genetics researches revealed that SNPs within certain haplotype blocks induce only a few distinct common haplotypes in the majority of the population. The existence of haplotype block structure has serious implications for association-based methods for the mapping of disease genes. This paper proposes a parallel haplotype block partition and SNPs selection method under a diversity function by using the Hadoop MapReduce framework. The experiment shows that the proposed MapReduce-paralleled combinatorial algorithm performs well on the real-world data obtained in from the HapMap data set; the computation efficiency can be significantly improved proportional to the number of processors being used. More... »

PAGES

525-534

Book

TITLE

Grid and Distributed Computing

ISBN

978-3-642-27179-3
978-3-642-27180-9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-27180-9_64

DOI

http://dx.doi.org/10.1007/978-3-642-27180-9_64

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026543934


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Providence University", 
          "id": "https://www.grid.ac/institutes/grid.412550.7", 
          "name": [
            "Dept. of Computer Science & Communication Engineering, Providence University, 200 Chung Chi Rd., Taichung, 43301, Republic of China, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hung", 
        "givenName": "Che-Lun", 
        "id": "sg:person.01336120166.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336120166.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Providence University", 
          "id": "https://www.grid.ac/institutes/grid.412550.7", 
          "name": [
            "Dept. of Computer Science & Information Management, Providence University, 200 Chung Chi Rd., Taichung, 43301, Republic of China, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Yaw-Ling", 
        "id": "sg:person.01032717740.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032717740.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Providence University", 
          "id": "https://www.grid.ac/institutes/grid.412550.7", 
          "name": [
            "Dept. of Computer Science & Information Management, Providence University, 200 Chung Chi Rd., Taichung, 43301, Republic of China, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hua", 
        "givenName": "Guan-Jie", 
        "id": "sg:person.01055745073.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055745073.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Providence University", 
          "id": "https://www.grid.ac/institutes/grid.412550.7", 
          "name": [
            "Dept. of Computer Science & Information Management, Providence University, 200 Chung Chi Rd., Taichung, 43301, Republic of China, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Yu-Chen", 
        "id": "sg:person.012113441135.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012113441135.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005165631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1629175.1629198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006814493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-4388(00)00261-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008356697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1069424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010139737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000073729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014435426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1001-233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017573512", 
          "https://doi.org/10.1038/ng1001-233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1001-233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017573512", 
          "https://doi.org/10.1038/ng1001-233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.mp.4001779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023011769", 
          "https://doi.org/10.1038/sj.mp.4001779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.mp.4001779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023011769", 
          "https://doi.org/10.1038/sj.mp.4001779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1001-229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026787741", 
          "https://doi.org/10.1038/ng1001-229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1001-229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026787741", 
          "https://doi.org/10.1038/ng1001-229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2010.05.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027321888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029688589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2010.08.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029981129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035277876", 
          "https://doi.org/10.1186/1471-2105-6-303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.483802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037792121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040675195", 
          "https://doi.org/10.1038/nature00864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040675195", 
          "https://doi.org/10.1038/nature00864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/9.16.2403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041769869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-s12-s1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044778751", 
          "https://doi.org/10.1186/1471-2105-11-s12-s1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1837404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047213321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-69733-6_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047382730", 
          "https://doi.org/10.1007/978-3-540-69733-6_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.humimm.2005.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049231837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.humimm.2005.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049231837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/344398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058640423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/344398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058640423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/344780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058640580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/344780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058640580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/377106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058670200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/377106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058670200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/378099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058671155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/378099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058671155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1065573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080090263", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "SNPs are fundamental roles for various applications including medical diagnostic, phylogenies and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Genetic variants that are near each other tend to be inherited together; these regions of linked variants are known as haplotypes. Recently, genetics researches revealed that SNPs within certain haplotype blocks induce only a few distinct common haplotypes in the majority of the population. The existence of haplotype block structure has serious implications for association-based methods for the mapping of disease genes. This paper proposes a parallel haplotype block partition and SNPs selection method under a diversity function by using the Hadoop MapReduce framework. The experiment shows that the proposed MapReduce-paralleled combinatorial algorithm performs well on the real-world data obtained in from the HapMap data set; the computation efficiency can be significantly improved proportional to the number of processors being used.", 
    "editor": [
      {
        "familyName": "Kim", 
        "givenName": "Tai-hoon", 
        "type": "Person"
      }, 
      {
        "familyName": "Adeli", 
        "givenName": "Hojjat", 
        "type": "Person"
      }, 
      {
        "familyName": "Cho", 
        "givenName": "Hyun-seob", 
        "type": "Person"
      }, 
      {
        "familyName": "Gervasi", 
        "givenName": "Osvaldo", 
        "type": "Person"
      }, 
      {
        "familyName": "Yau", 
        "givenName": "Stephen S.", 
        "type": "Person"
      }, 
      {
        "familyName": "Kang", 
        "givenName": "Byeong-Ho", 
        "type": "Person"
      }, 
      {
        "familyName": "Villalba", 
        "givenName": "Javier Garc\u00eda", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-27180-9_64", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-27179-3", 
        "978-3-642-27180-9"
      ], 
      "name": "Grid and Distributed Computing", 
      "type": "Book"
    }, 
    "name": "CloudTSS: A TagSNP Selection Approach on Cloud Computing", 
    "pagination": "525-534", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-27180-9_64"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7e74d8372f6b2a1dd337c92b1fc4be9c693eb8266bf2350b7829eb29c404ba18"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026543934"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-27180-9_64", 
      "https://app.dimensions.ai/details/publication/pub.1026543934"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000288.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-27180-9_64"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-27180-9_64'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-27180-9_64'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-27180-9_64'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-27180-9_64'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      23 PREDICATES      52 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-27180-9_64 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N0adb9d12d3064d9488661ab2d9f9798f
4 schema:citation sg:pub.10.1007/978-3-540-69733-6_31
5 sg:pub.10.1038/nature00864
6 sg:pub.10.1038/ng1001-229
7 sg:pub.10.1038/ng1001-233
8 sg:pub.10.1038/sj.mp.4001779
9 sg:pub.10.1186/1471-2105-11-s12-s1
10 sg:pub.10.1186/1471-2105-6-303
11 https://app.dimensions.ai/details/publication/pub.1080090263
12 https://doi.org/10.1016/j.humimm.2005.10.001
13 https://doi.org/10.1016/j.jbi.2010.05.011
14 https://doi.org/10.1016/j.jtbi.2010.08.019
15 https://doi.org/10.1016/s0959-4388(00)00261-0
16 https://doi.org/10.1086/344398
17 https://doi.org/10.1086/344780
18 https://doi.org/10.1086/377106
19 https://doi.org/10.1086/378099
20 https://doi.org/10.1093/bioinformatics/bth907
21 https://doi.org/10.1093/bioinformatics/btp236
22 https://doi.org/10.1093/hmg/9.16.2403
23 https://doi.org/10.1101/gr.1837404
24 https://doi.org/10.1101/gr.483802
25 https://doi.org/10.1126/science.1065573
26 https://doi.org/10.1126/science.1069424
27 https://doi.org/10.1145/1629175.1629198
28 https://doi.org/10.1159/000073729
29 schema:datePublished 2011
30 schema:datePublishedReg 2011-01-01
31 schema:description SNPs are fundamental roles for various applications including medical diagnostic, phylogenies and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Genetic variants that are near each other tend to be inherited together; these regions of linked variants are known as haplotypes. Recently, genetics researches revealed that SNPs within certain haplotype blocks induce only a few distinct common haplotypes in the majority of the population. The existence of haplotype block structure has serious implications for association-based methods for the mapping of disease genes. This paper proposes a parallel haplotype block partition and SNPs selection method under a diversity function by using the Hadoop MapReduce framework. The experiment shows that the proposed MapReduce-paralleled combinatorial algorithm performs well on the real-world data obtained in from the HapMap data set; the computation efficiency can be significantly improved proportional to the number of processors being used.
32 schema:editor N3a3501a9eb5c4b0b96cacde8fa229ba5
33 schema:genre chapter
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N0ce2b0e5984c450f8a182e4727550652
37 schema:name CloudTSS: A TagSNP Selection Approach on Cloud Computing
38 schema:pagination 525-534
39 schema:productId N6c6cde481dcb43d38174dcbf3b018e8e
40 Nab14123fe2a0489b94969de32f076612
41 Ne03c10b06dc84fc787b24f91c3aab278
42 schema:publisher N930c3ed1b4cd44859fb4cf13b14552bf
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026543934
44 https://doi.org/10.1007/978-3-642-27180-9_64
45 schema:sdDatePublished 2019-04-15T20:10
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N68bb3c0db55640bea7056e32adff6516
48 schema:url http://link.springer.com/10.1007/978-3-642-27180-9_64
49 sgo:license sg:explorer/license/
50 sgo:sdDataset chapters
51 rdf:type schema:Chapter
52 N0adb9d12d3064d9488661ab2d9f9798f rdf:first sg:person.01336120166.62
53 rdf:rest N587d1a06eedc422c896bdcaf7f55b8f5
54 N0bfd28b961cf44a88f0ad1b263513592 schema:familyName Kim
55 schema:givenName Tai-hoon
56 rdf:type schema:Person
57 N0ce2b0e5984c450f8a182e4727550652 schema:isbn 978-3-642-27179-3
58 978-3-642-27180-9
59 schema:name Grid and Distributed Computing
60 rdf:type schema:Book
61 N308dc68a5ffe457b82cbb26dc1527ab8 rdf:first N577326e06f374997aa5a183b534b70c4
62 rdf:rest rdf:nil
63 N3a3501a9eb5c4b0b96cacde8fa229ba5 rdf:first N0bfd28b961cf44a88f0ad1b263513592
64 rdf:rest Nd5890dbc466545e9ace3a4f112b5d362
65 N4153af54c1ab44cca35c4d6da4cb476c schema:familyName Kang
66 schema:givenName Byeong-Ho
67 rdf:type schema:Person
68 N53add9f661644591b7787268c230a980 rdf:first sg:person.01055745073.69
69 rdf:rest N6e833f0995874b6daaa3790d4ace917c
70 N577326e06f374997aa5a183b534b70c4 schema:familyName Villalba
71 schema:givenName Javier García
72 rdf:type schema:Person
73 N587d1a06eedc422c896bdcaf7f55b8f5 rdf:first sg:person.01032717740.48
74 rdf:rest N53add9f661644591b7787268c230a980
75 N68bb3c0db55640bea7056e32adff6516 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N6c6cde481dcb43d38174dcbf3b018e8e schema:name doi
78 schema:value 10.1007/978-3-642-27180-9_64
79 rdf:type schema:PropertyValue
80 N6cc85eab7739472baec31908dbfb5348 rdf:first Ne772e21baeab440196dc9d140a0d631d
81 rdf:rest Nbb61d9d030fe4a5f85b16bc87c823bf0
82 N6e833f0995874b6daaa3790d4ace917c rdf:first sg:person.012113441135.19
83 rdf:rest rdf:nil
84 N790a5a03c81d4f47abc428c5934301d1 rdf:first Nab29c5b625384c8a956809002c3d6756
85 rdf:rest N6cc85eab7739472baec31908dbfb5348
86 N930c3ed1b4cd44859fb4cf13b14552bf schema:location Berlin, Heidelberg
87 schema:name Springer Berlin Heidelberg
88 rdf:type schema:Organisation
89 N9617600e38d8412092f89b79d21463eb schema:familyName Cho
90 schema:givenName Hyun-seob
91 rdf:type schema:Person
92 Nab14123fe2a0489b94969de32f076612 schema:name readcube_id
93 schema:value 7e74d8372f6b2a1dd337c92b1fc4be9c693eb8266bf2350b7829eb29c404ba18
94 rdf:type schema:PropertyValue
95 Nab29c5b625384c8a956809002c3d6756 schema:familyName Gervasi
96 schema:givenName Osvaldo
97 rdf:type schema:Person
98 Nbb61d9d030fe4a5f85b16bc87c823bf0 rdf:first N4153af54c1ab44cca35c4d6da4cb476c
99 rdf:rest N308dc68a5ffe457b82cbb26dc1527ab8
100 Nc4ae4fb5431b4eb6898f833326a9a9da schema:familyName Adeli
101 schema:givenName Hojjat
102 rdf:type schema:Person
103 Nc5815f59a01b4db3a065f42bbebf3909 rdf:first N9617600e38d8412092f89b79d21463eb
104 rdf:rest N790a5a03c81d4f47abc428c5934301d1
105 Nd5890dbc466545e9ace3a4f112b5d362 rdf:first Nc4ae4fb5431b4eb6898f833326a9a9da
106 rdf:rest Nc5815f59a01b4db3a065f42bbebf3909
107 Ne03c10b06dc84fc787b24f91c3aab278 schema:name dimensions_id
108 schema:value pub.1026543934
109 rdf:type schema:PropertyValue
110 Ne772e21baeab440196dc9d140a0d631d schema:familyName Yau
111 schema:givenName Stephen S.
112 rdf:type schema:Person
113 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
114 schema:name Biological Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
117 schema:name Genetics
118 rdf:type schema:DefinedTerm
119 sg:person.01032717740.48 schema:affiliation https://www.grid.ac/institutes/grid.412550.7
120 schema:familyName Lin
121 schema:givenName Yaw-Ling
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032717740.48
123 rdf:type schema:Person
124 sg:person.01055745073.69 schema:affiliation https://www.grid.ac/institutes/grid.412550.7
125 schema:familyName Hua
126 schema:givenName Guan-Jie
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055745073.69
128 rdf:type schema:Person
129 sg:person.012113441135.19 schema:affiliation https://www.grid.ac/institutes/grid.412550.7
130 schema:familyName Hu
131 schema:givenName Yu-Chen
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012113441135.19
133 rdf:type schema:Person
134 sg:person.01336120166.62 schema:affiliation https://www.grid.ac/institutes/grid.412550.7
135 schema:familyName Hung
136 schema:givenName Che-Lun
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336120166.62
138 rdf:type schema:Person
139 sg:pub.10.1007/978-3-540-69733-6_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047382730
140 https://doi.org/10.1007/978-3-540-69733-6_31
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nature00864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040675195
143 https://doi.org/10.1038/nature00864
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/ng1001-229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026787741
146 https://doi.org/10.1038/ng1001-229
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/ng1001-233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017573512
149 https://doi.org/10.1038/ng1001-233
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/sj.mp.4001779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023011769
152 https://doi.org/10.1038/sj.mp.4001779
153 rdf:type schema:CreativeWork
154 sg:pub.10.1186/1471-2105-11-s12-s1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044778751
155 https://doi.org/10.1186/1471-2105-11-s12-s1
156 rdf:type schema:CreativeWork
157 sg:pub.10.1186/1471-2105-6-303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035277876
158 https://doi.org/10.1186/1471-2105-6-303
159 rdf:type schema:CreativeWork
160 https://app.dimensions.ai/details/publication/pub.1080090263 schema:CreativeWork
161 https://doi.org/10.1016/j.humimm.2005.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049231837
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.jbi.2010.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027321888
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.jtbi.2010.08.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029981129
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/s0959-4388(00)00261-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008356697
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1086/344398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058640423
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1086/344780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058640580
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1086/377106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058670200
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1086/378099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058671155
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/bioinformatics/bth907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005165631
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1093/bioinformatics/btp236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029688589
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/hmg/9.16.2403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041769869
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1101/gr.1837404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047213321
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1101/gr.483802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037792121
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1126/science.1065573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445519
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1126/science.1069424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010139737
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1145/1629175.1629198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006814493
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1159/000073729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014435426
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.412550.7 schema:alternateName Providence University
196 schema:name Dept. of Computer Science & Communication Engineering, Providence University, 200 Chung Chi Rd., Taichung, 43301, Republic of China, Taiwan
197 Dept. of Computer Science & Information Management, Providence University, 200 Chung Chi Rd., Taichung, 43301, Republic of China, Taiwan
198 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...