Correlation between Genetic Diversity and Fitness in a Predator-Prey Ecosystem Simulation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Marwa Khater , Elham Salehi , Robin Gras

ABSTRACT

Biologists are interested in studying the relation between the genetic diversity of a population and its fitness. We adopt the notion of entropy as a measure of genetic diversity and correlate it with fitness of an evolutionary ecosystem simulation. EcoSim is a predator-prey individual based simulation which models co-evolving sexual individuals evolving in a dynamic environment. The correlation values between entropy and fitness of all the species that ever existed during the whole simulation are presented. We show how entropy strongly correlates with fitness and investigate the factors behind this result using machine learning techniques. We build a classifier based on different species’ features and successfully predict the resulting correlation value between entropy and fitness. The best features affecting the quality of classification are also being investigated. More... »

PAGES

422-431

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-25832-9_43

DOI

http://dx.doi.org/10.1007/978-3-642-25832-9_43

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003613558


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Science and Management", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Computer Science, University of Windsor, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "School of Computer Science, University of Windsor, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khater", 
        "givenName": "Marwa", 
        "id": "sg:person.07737241331.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07737241331.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Computer Science, University of Windsor, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "School of Computer Science, University of Windsor, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salehi", 
        "givenName": "Elham", 
        "id": "sg:person.010615066575.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010615066575.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Computer Science, University of Windsor, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "School of Computer Science, University of Windsor, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gras", 
        "givenName": "Robin", 
        "id": "sg:person.0712313416.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712313416.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "Biologists are interested in studying the relation between the genetic diversity of a population and its fitness. We adopt the notion of entropy as a measure of genetic diversity and correlate it with fitness of an evolutionary ecosystem simulation. EcoSim is a predator-prey individual based simulation which models co-evolving sexual individuals evolving in a dynamic environment. The correlation values between entropy and fitness of all the species that ever existed during the whole simulation are presented. We show how entropy strongly correlates with fitness and investigate the factors behind this result using machine learning techniques. We build a classifier based on different species\u2019 features and successfully predict the resulting correlation value between entropy and fitness. The best features affecting the quality of classification are also being investigated.", 
    "editor": [
      {
        "familyName": "Wang", 
        "givenName": "Dianhui", 
        "type": "Person"
      }, 
      {
        "familyName": "Reynolds", 
        "givenName": "Mark", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-25832-9_43", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-25831-2", 
        "978-3-642-25832-9"
      ], 
      "name": "AI 2011: Advances in Artificial Intelligence", 
      "type": "Book"
    }, 
    "keywords": [
      "genetic diversity", 
      "Predator-Prey Ecosystem Simulation", 
      "ecosystem simulation", 
      "sexual individuals", 
      "different species", 
      "diversity", 
      "fitness", 
      "species", 
      "Ecosim", 
      "biologists", 
      "population", 
      "individuals", 
      "environment", 
      "factors", 
      "features", 
      "correlation values", 
      "results", 
      "correlation", 
      "dynamic environment", 
      "quality of classification", 
      "relation", 
      "classification", 
      "values", 
      "quality", 
      "notion", 
      "measures", 
      "technique", 
      "notion of entropy", 
      "whole simulation", 
      "simulations", 
      "best features", 
      "entropy", 
      "classifier", 
      "machine", 
      "evolutionary ecosystem simulation", 
      "predator-prey individual", 
      "models co-evolving sexual individuals", 
      "co-evolving sexual individuals"
    ], 
    "name": "Correlation between Genetic Diversity and Fitness in a Predator-Prey Ecosystem Simulation", 
    "pagination": "422-431", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003613558"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-25832-9_43"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-25832-9_43", 
      "https://app.dimensions.ai/details/publication/pub.1003613558"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_310.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-25832-9_43"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25832-9_43'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25832-9_43'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25832-9_43'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25832-9_43'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      23 PREDICATES      68 URIs      57 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-25832-9_43 schema:about anzsrc-for:05
2 anzsrc-for:0502
3 anzsrc-for:06
4 anzsrc-for:0602
5 anzsrc-for:08
6 anzsrc-for:0801
7 schema:author Na27c75ca1672426d9627e2d8c56a508a
8 schema:datePublished 2011
9 schema:datePublishedReg 2011-01-01
10 schema:description Biologists are interested in studying the relation between the genetic diversity of a population and its fitness. We adopt the notion of entropy as a measure of genetic diversity and correlate it with fitness of an evolutionary ecosystem simulation. EcoSim is a predator-prey individual based simulation which models co-evolving sexual individuals evolving in a dynamic environment. The correlation values between entropy and fitness of all the species that ever existed during the whole simulation are presented. We show how entropy strongly correlates with fitness and investigate the factors behind this result using machine learning techniques. We build a classifier based on different species’ features and successfully predict the resulting correlation value between entropy and fitness. The best features affecting the quality of classification are also being investigated.
11 schema:editor N1187ced7813f473bad537215df237fcd
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf Nebd0fed2dfd94102a0836c0643886fad
16 schema:keywords Ecosim
17 Predator-Prey Ecosystem Simulation
18 best features
19 biologists
20 classification
21 classifier
22 co-evolving sexual individuals
23 correlation
24 correlation values
25 different species
26 diversity
27 dynamic environment
28 ecosystem simulation
29 entropy
30 environment
31 evolutionary ecosystem simulation
32 factors
33 features
34 fitness
35 genetic diversity
36 individuals
37 machine
38 measures
39 models co-evolving sexual individuals
40 notion
41 notion of entropy
42 population
43 predator-prey individual
44 quality
45 quality of classification
46 relation
47 results
48 sexual individuals
49 simulations
50 species
51 technique
52 values
53 whole simulation
54 schema:name Correlation between Genetic Diversity and Fitness in a Predator-Prey Ecosystem Simulation
55 schema:pagination 422-431
56 schema:productId N4dbd97c7cd414a5e9cbfe1891c445efc
57 Nb7fde8448810454aab21046b05e74e18
58 schema:publisher N3ecd37666f6f4bd583ea9d90923c7b07
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003613558
60 https://doi.org/10.1007/978-3-642-25832-9_43
61 schema:sdDatePublished 2022-01-01T19:18
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N48fe860212564150accc50abe4e2cae7
64 schema:url https://doi.org/10.1007/978-3-642-25832-9_43
65 sgo:license sg:explorer/license/
66 sgo:sdDataset chapters
67 rdf:type schema:Chapter
68 N1187ced7813f473bad537215df237fcd rdf:first Ncd167602de48455184858652ea259d7e
69 rdf:rest N4dff7e862a754d3eb4561b9e1d2aabda
70 N3ecd37666f6f4bd583ea9d90923c7b07 schema:name Springer Nature
71 rdf:type schema:Organisation
72 N48fe860212564150accc50abe4e2cae7 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N492a754551384cc888e34515f2417f52 rdf:first sg:person.0712313416.43
75 rdf:rest rdf:nil
76 N4dbd97c7cd414a5e9cbfe1891c445efc schema:name dimensions_id
77 schema:value pub.1003613558
78 rdf:type schema:PropertyValue
79 N4dff7e862a754d3eb4561b9e1d2aabda rdf:first N6679551a0ab141dba91c27c2b8cb58ce
80 rdf:rest rdf:nil
81 N6679551a0ab141dba91c27c2b8cb58ce schema:familyName Reynolds
82 schema:givenName Mark
83 rdf:type schema:Person
84 Na27c75ca1672426d9627e2d8c56a508a rdf:first sg:person.07737241331.42
85 rdf:rest Nd3ec606de0fa4a95a8d56268a42b7d95
86 Nb7fde8448810454aab21046b05e74e18 schema:name doi
87 schema:value 10.1007/978-3-642-25832-9_43
88 rdf:type schema:PropertyValue
89 Ncd167602de48455184858652ea259d7e schema:familyName Wang
90 schema:givenName Dianhui
91 rdf:type schema:Person
92 Nd3ec606de0fa4a95a8d56268a42b7d95 rdf:first sg:person.010615066575.96
93 rdf:rest N492a754551384cc888e34515f2417f52
94 Nebd0fed2dfd94102a0836c0643886fad schema:isbn 978-3-642-25831-2
95 978-3-642-25832-9
96 schema:name AI 2011: Advances in Artificial Intelligence
97 rdf:type schema:Book
98 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
99 schema:name Environmental Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
102 schema:name Environmental Science and Management
103 rdf:type schema:DefinedTerm
104 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
105 schema:name Biological Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
108 schema:name Ecology
109 rdf:type schema:DefinedTerm
110 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
111 schema:name Information and Computing Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
114 schema:name Artificial Intelligence and Image Processing
115 rdf:type schema:DefinedTerm
116 sg:person.010615066575.96 schema:affiliation grid-institutes:grid.267455.7
117 schema:familyName Salehi
118 schema:givenName Elham
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010615066575.96
120 rdf:type schema:Person
121 sg:person.0712313416.43 schema:affiliation grid-institutes:grid.267455.7
122 schema:familyName Gras
123 schema:givenName Robin
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712313416.43
125 rdf:type schema:Person
126 sg:person.07737241331.42 schema:affiliation grid-institutes:grid.267455.7
127 schema:familyName Khater
128 schema:givenName Marwa
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07737241331.42
130 rdf:type schema:Person
131 grid-institutes:grid.267455.7 schema:alternateName School of Computer Science, University of Windsor, ON, Canada
132 schema:name School of Computer Science, University of Windsor, ON, Canada
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...