Laser Driven Burning and Detonation Waves in Silica-Based Optical Fibers View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

V. P. Efremov , V. E. Fortov , A. A. Frolov , E. M. Dianov , I. A. Bufetov

ABSTRACT

Laser energy focused in bulk of transparent dielectric creates heated and elevated pressure zone producing nonreversible media destruction. Physical nature of this effect is steady in focus of modern physical studies since laser invention. Silica is quite attractive object for this due to its numerous physical and technical applications. Silica-based optical fibers provided new unique possibility for laser damaged zone study. Single mode optical fiber has constant laser radiation distribution in any transverse cross-section along the full length. This property makes available to observe propagation of energy deposition zone under steady-state conditions as opposed to laser focused into unknown initial volume of transparent dielectric target, particularly for long laser pulses (τ p > 1ns). The damage zone in optical fiber can expands to any distance to laser direction. Such laser driven wave (LDW) destroys the core and sometimes cladding too. Temperature in fiber optic core can achieve up to ~104 K and silica goes to hot plasma with solid density. More... »

PAGES

783-788

Book

TITLE

28th International Symposium on Shock Waves

ISBN

978-3-642-25684-4
978-3-642-25685-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-25685-1_119

DOI

http://dx.doi.org/10.1007/978-3-642-25685-1_119

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000665478


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Joint Institute for High Temperatures", 
          "id": "https://www.grid.ac/institutes/grid.435259.c", 
          "name": [
            "Joint Institute for High Temperatures of RAS, Izhorskaya st., 13, Bd. 2, 125412\u00a0Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Efremov", 
        "givenName": "V. P.", 
        "id": "sg:person.012416543051.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012416543051.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Joint Institute for High Temperatures", 
          "id": "https://www.grid.ac/institutes/grid.435259.c", 
          "name": [
            "Joint Institute for High Temperatures of RAS, Izhorskaya st., 13, Bd. 2, 125412\u00a0Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fortov", 
        "givenName": "V. E.", 
        "id": "sg:person.013103453750.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013103453750.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fiber Optics Research Center", 
          "id": "https://www.grid.ac/institutes/grid.465410.2", 
          "name": [
            "Fiber Optics Research Center RAS, Russia, 119991\u00a0Moscow, Vavilova 38"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frolov", 
        "givenName": "A. A.", 
        "id": "sg:person.013016173160.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013016173160.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fiber Optics Research Center", 
          "id": "https://www.grid.ac/institutes/grid.465410.2", 
          "name": [
            "Fiber Optics Research Center RAS, Russia, 119991\u00a0Moscow, Vavilova 38"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dianov", 
        "givenName": "E. M.", 
        "id": "sg:person.012452012713.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012452012713.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fiber Optics Research Center", 
          "id": "https://www.grid.ac/institutes/grid.465410.2", 
          "name": [
            "Fiber Optics Research Center RAS, Russia, 119991\u00a0Moscow, Vavilova 38"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bufetov", 
        "givenName": "I. A.", 
        "id": "sg:person.0745726565.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745726565.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s002136400602007x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018345199", 
          "https://doi.org/10.1134/s002136400602007x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.274501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.274501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.087401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.087401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lpt.2006.871110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061368241"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Laser energy focused in bulk of transparent dielectric creates heated and elevated pressure zone producing nonreversible media destruction. Physical nature of this effect is steady in focus of modern physical studies since laser invention. Silica is quite attractive object for this due to its numerous physical and technical applications. Silica-based optical fibers provided new unique possibility for laser damaged zone study. Single mode optical fiber has constant laser radiation distribution in any transverse cross-section along the full length. This property makes available to observe propagation of energy deposition zone under steady-state conditions as opposed to laser focused into unknown initial volume of transparent dielectric target, particularly for long laser pulses (\u03c4 p \u2009>\u20091ns). The damage zone in optical fiber can expands to any distance to laser direction. Such laser driven wave (LDW) destroys the core and sometimes cladding too. Temperature in fiber optic core can achieve up to ~104 K and silica goes to hot plasma with solid density.", 
    "editor": [
      {
        "familyName": "Kontis", 
        "givenName": "Konstantinos", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-25685-1_119", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-25684-4", 
        "978-3-642-25685-1"
      ], 
      "name": "28th International Symposium on Shock Waves", 
      "type": "Book"
    }, 
    "name": "Laser Driven Burning and Detonation Waves in Silica-Based Optical Fibers", 
    "pagination": "783-788", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-25685-1_119"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "032b6081297311bdd61a44210982c992b179ab42250519dd294994e204f5e3cf"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000665478"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-25685-1_119", 
      "https://app.dimensions.ai/details/publication/pub.1000665478"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000243.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-25685-1_119"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25685-1_119'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25685-1_119'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25685-1_119'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25685-1_119'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-25685-1_119 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N9976e99434c94ebbb2ac70bf88deb9b4
4 schema:citation sg:pub.10.1134/s002136400602007x
5 https://doi.org/10.1103/physrevlett.87.274501
6 https://doi.org/10.1103/physrevlett.92.087401
7 https://doi.org/10.1109/lpt.2006.871110
8 schema:datePublished 2012
9 schema:datePublishedReg 2012-01-01
10 schema:description Laser energy focused in bulk of transparent dielectric creates heated and elevated pressure zone producing nonreversible media destruction. Physical nature of this effect is steady in focus of modern physical studies since laser invention. Silica is quite attractive object for this due to its numerous physical and technical applications. Silica-based optical fibers provided new unique possibility for laser damaged zone study. Single mode optical fiber has constant laser radiation distribution in any transverse cross-section along the full length. This property makes available to observe propagation of energy deposition zone under steady-state conditions as opposed to laser focused into unknown initial volume of transparent dielectric target, particularly for long laser pulses (τ p  > 1ns). The damage zone in optical fiber can expands to any distance to laser direction. Such laser driven wave (LDW) destroys the core and sometimes cladding too. Temperature in fiber optic core can achieve up to ~104 K and silica goes to hot plasma with solid density.
11 schema:editor N0f31f6979ea54c938f7b14fa2cf7551c
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf Ndc6ae3b5e4f44c5795f4b96364d39787
16 schema:name Laser Driven Burning and Detonation Waves in Silica-Based Optical Fibers
17 schema:pagination 783-788
18 schema:productId N2ea5c97710ea4a55ae37e3c999a61560
19 N49975f4050c54aafb3138416e4f85ae0
20 N6d76e17888d440ad95b43e94bc5d7112
21 schema:publisher N90559743cd43463c9604270b8481e230
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000665478
23 https://doi.org/10.1007/978-3-642-25685-1_119
24 schema:sdDatePublished 2019-04-15T20:59
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N359c7645ea7b4fd0a7843eec3997c139
27 schema:url http://link.springer.com/10.1007/978-3-642-25685-1_119
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N0f31f6979ea54c938f7b14fa2cf7551c rdf:first N584714aa13ef468dbaa34948c9aa6500
32 rdf:rest rdf:nil
33 N2ea5c97710ea4a55ae37e3c999a61560 schema:name dimensions_id
34 schema:value pub.1000665478
35 rdf:type schema:PropertyValue
36 N359c7645ea7b4fd0a7843eec3997c139 schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N412d92947c984a19b6e843a513a455c3 rdf:first sg:person.012452012713.37
39 rdf:rest Nb9f0b3bf0d4e48d7974c04eceba3667d
40 N49975f4050c54aafb3138416e4f85ae0 schema:name doi
41 schema:value 10.1007/978-3-642-25685-1_119
42 rdf:type schema:PropertyValue
43 N572ea7230ef64c85a99d2fab24280163 rdf:first sg:person.013103453750.81
44 rdf:rest Nd1689bc606c941bf992f45ece295547e
45 N584714aa13ef468dbaa34948c9aa6500 schema:familyName Kontis
46 schema:givenName Konstantinos
47 rdf:type schema:Person
48 N6d76e17888d440ad95b43e94bc5d7112 schema:name readcube_id
49 schema:value 032b6081297311bdd61a44210982c992b179ab42250519dd294994e204f5e3cf
50 rdf:type schema:PropertyValue
51 N90559743cd43463c9604270b8481e230 schema:location Berlin, Heidelberg
52 schema:name Springer Berlin Heidelberg
53 rdf:type schema:Organisation
54 N9976e99434c94ebbb2ac70bf88deb9b4 rdf:first sg:person.012416543051.29
55 rdf:rest N572ea7230ef64c85a99d2fab24280163
56 Nb9f0b3bf0d4e48d7974c04eceba3667d rdf:first sg:person.0745726565.56
57 rdf:rest rdf:nil
58 Nd1689bc606c941bf992f45ece295547e rdf:first sg:person.013016173160.20
59 rdf:rest N412d92947c984a19b6e843a513a455c3
60 Ndc6ae3b5e4f44c5795f4b96364d39787 schema:isbn 978-3-642-25684-4
61 978-3-642-25685-1
62 schema:name 28th International Symposium on Shock Waves
63 rdf:type schema:Book
64 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
65 schema:name Physical Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
68 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
69 rdf:type schema:DefinedTerm
70 sg:person.012416543051.29 schema:affiliation https://www.grid.ac/institutes/grid.435259.c
71 schema:familyName Efremov
72 schema:givenName V. P.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012416543051.29
74 rdf:type schema:Person
75 sg:person.012452012713.37 schema:affiliation https://www.grid.ac/institutes/grid.465410.2
76 schema:familyName Dianov
77 schema:givenName E. M.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012452012713.37
79 rdf:type schema:Person
80 sg:person.013016173160.20 schema:affiliation https://www.grid.ac/institutes/grid.465410.2
81 schema:familyName Frolov
82 schema:givenName A. A.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013016173160.20
84 rdf:type schema:Person
85 sg:person.013103453750.81 schema:affiliation https://www.grid.ac/institutes/grid.435259.c
86 schema:familyName Fortov
87 schema:givenName V. E.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013103453750.81
89 rdf:type schema:Person
90 sg:person.0745726565.56 schema:affiliation https://www.grid.ac/institutes/grid.465410.2
91 schema:familyName Bufetov
92 schema:givenName I. A.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745726565.56
94 rdf:type schema:Person
95 sg:pub.10.1134/s002136400602007x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018345199
96 https://doi.org/10.1134/s002136400602007x
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physrevlett.87.274501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060824195
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physrevlett.92.087401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060827969
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1109/lpt.2006.871110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061368241
103 rdf:type schema:CreativeWork
104 https://www.grid.ac/institutes/grid.435259.c schema:alternateName Joint Institute for High Temperatures
105 schema:name Joint Institute for High Temperatures of RAS, Izhorskaya st., 13, Bd. 2, 125412 Moscow, Russia
106 rdf:type schema:Organization
107 https://www.grid.ac/institutes/grid.465410.2 schema:alternateName Fiber Optics Research Center
108 schema:name Fiber Optics Research Center RAS, Russia, 119991 Moscow, Vavilova 38
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...