Genetic Diversity and Effective Crossover in Evolutionary Many-objective Optimization View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Hiroyuki Sato , Hernán E. Aguirre , Kiyoshi Tanaka

ABSTRACT

In this work, we analyze genetic diversity of Pareto optimal solutions (POS) and study effective crossover operators in evolutionary many-objective optimization. First we examine the diversity of genes in the true POS on many-objective 0/1 knapsack problems with up to 20 items (bits), showing that genes in POS become noticeably diverse as we increase the number of objectives. We also verify the effectiveness of conventional two-point crossover, Local Recombination that selects mating parents based on proximity in objective space, and two-point and uniform crossover operators Controlling the maximum number of Crossed Genes (CCG). We use NSGA-II, SPEA2, IBEAε + and MSOPS, which adopt different selection methods, and many-objective 0/1 knapsack problems with n = {100,250,500,750,1000} items (bits) and m = {2,4,6,8,10} objectives to verify the search performance of each crossover operator. Simulation results reveal that Local Recombination and CCG operators significantly improve search performance especially for NSGA-II and MSOPS, which have high diversity of genes in the population. Also, results show that CCG operators achieve higher search performance than Local Recombination for m ≥ 4 objectives and that their effectiveness becomes larger as the number of objectives m increases. More... »

PAGES

91-105

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-25566-3_7

DOI

http://dx.doi.org/10.1007/978-3-642-25566-3_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010706779


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.266298.1", 
          "name": [
            "Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sato", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.07750750604.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750750604.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan", 
          "id": "http://www.grid.ac/institutes/grid.263518.b", 
          "name": [
            "International Young Researcher Empowerment Center, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan", 
            "Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aguirre", 
        "givenName": "Hern\u00e1n E.", 
        "id": "sg:person.011172121105.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011172121105.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan", 
          "id": "http://www.grid.ac/institutes/grid.263518.b", 
          "name": [
            "Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanaka", 
        "givenName": "Kiyoshi", 
        "id": "sg:person.010261063603.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010261063603.03"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "In this work, we analyze genetic diversity of Pareto optimal solutions (POS) and study effective crossover operators in evolutionary many-objective optimization. First we examine the diversity of genes in the true POS on many-objective 0/1 knapsack problems with up to 20 items (bits), showing that genes in POS become noticeably diverse as we increase the number of objectives. We also verify the effectiveness of conventional two-point crossover, Local Recombination that selects mating parents based on proximity in objective space, and two-point and uniform crossover operators Controlling the maximum number of Crossed Genes (CCG). We use NSGA-II, SPEA2, IBEA\u03b5\u2009+\u2009 and MSOPS, which adopt different selection methods, and many-objective 0/1 knapsack problems with n\u2009=\u2009{100,250,500,750,1000} items (bits) and m\u2009=\u2009{2,4,6,8,10} objectives to verify the search performance of each crossover operator. Simulation results reveal that Local Recombination and CCG operators significantly improve search performance especially for NSGA-II and MSOPS, which have high diversity of genes in the population. Also, results show that CCG operators achieve higher search performance than Local Recombination for m\u2009\u2265\u20094 objectives and that their effectiveness becomes larger as the number of objectives m increases.", 
    "editor": [
      {
        "familyName": "Coello", 
        "givenName": "Carlos A. Coello", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-25566-3_7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-25565-6", 
        "978-3-642-25566-3"
      ], 
      "name": "Learning and Intelligent Optimization", 
      "type": "Book"
    }, 
    "keywords": [
      "Pareto optimal solutions", 
      "number of objectives", 
      "CCG operators", 
      "objective optimization", 
      "crossover operator", 
      "true Pareto optimal solutions", 
      "knapsack problem", 
      "uniform crossover operator", 
      "high search performance", 
      "effective crossover operators", 
      "objective space", 
      "optimal solution", 
      "effective crossover", 
      "two-point", 
      "search performance", 
      "operators", 
      "MSOPS", 
      "NSGA", 
      "local recombination", 
      "simulation results", 
      "different selection methods", 
      "two-point crossover", 
      "optimization", 
      "selection method", 
      "problem", 
      "SPEA2", 
      "maximum number", 
      "effectiveness", 
      "space", 
      "performance", 
      "solution", 
      "crossover", 
      "number", 
      "objective", 
      "results", 
      "work", 
      "diversity of genes", 
      "diversity", 
      "items", 
      "proximity", 
      "population", 
      "high diversity", 
      "genetic diversity", 
      "recombination", 
      "increase", 
      "genes", 
      "parents", 
      "method", 
      "IBEA\u03b5"
    ], 
    "name": "Genetic Diversity and Effective Crossover in Evolutionary Many-objective Optimization", 
    "pagination": "91-105", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010706779"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-25566-3_7"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-25566-3_7", 
      "https://app.dimensions.ai/details/publication/pub.1010706779"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_417.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-25566-3_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25566-3_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25566-3_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25566-3_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25566-3_7'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      23 PREDICATES      75 URIs      68 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-25566-3_7 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N1eaae0ae8f5e4f94aa2ddeb12426a340
4 schema:datePublished 2011
5 schema:datePublishedReg 2011-01-01
6 schema:description In this work, we analyze genetic diversity of Pareto optimal solutions (POS) and study effective crossover operators in evolutionary many-objective optimization. First we examine the diversity of genes in the true POS on many-objective 0/1 knapsack problems with up to 20 items (bits), showing that genes in POS become noticeably diverse as we increase the number of objectives. We also verify the effectiveness of conventional two-point crossover, Local Recombination that selects mating parents based on proximity in objective space, and two-point and uniform crossover operators Controlling the maximum number of Crossed Genes (CCG). We use NSGA-II, SPEA2, IBEAε +  and MSOPS, which adopt different selection methods, and many-objective 0/1 knapsack problems with n = {100,250,500,750,1000} items (bits) and m = {2,4,6,8,10} objectives to verify the search performance of each crossover operator. Simulation results reveal that Local Recombination and CCG operators significantly improve search performance especially for NSGA-II and MSOPS, which have high diversity of genes in the population. Also, results show that CCG operators achieve higher search performance than Local Recombination for m ≥ 4 objectives and that their effectiveness becomes larger as the number of objectives m increases.
7 schema:editor Nc8d9a7634ec347d4b95c33c9ad9e1c19
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N31627b824d274fad898cffead28e21a6
12 schema:keywords CCG operators
13 IBEAε
14 MSOPS
15 NSGA
16 Pareto optimal solutions
17 SPEA2
18 crossover
19 crossover operator
20 different selection methods
21 diversity
22 diversity of genes
23 effective crossover
24 effective crossover operators
25 effectiveness
26 genes
27 genetic diversity
28 high diversity
29 high search performance
30 increase
31 items
32 knapsack problem
33 local recombination
34 maximum number
35 method
36 number
37 number of objectives
38 objective
39 objective optimization
40 objective space
41 operators
42 optimal solution
43 optimization
44 parents
45 performance
46 population
47 problem
48 proximity
49 recombination
50 results
51 search performance
52 selection method
53 simulation results
54 solution
55 space
56 true Pareto optimal solutions
57 two-point
58 two-point crossover
59 uniform crossover operator
60 work
61 schema:name Genetic Diversity and Effective Crossover in Evolutionary Many-objective Optimization
62 schema:pagination 91-105
63 schema:productId N3b563cef822a43e988eb3bdf5944c26c
64 Nd7d6ee4047d944849850ebff6a8d42e1
65 schema:publisher Nbfc4dd080b674cbd8302de6467cff8e7
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010706779
67 https://doi.org/10.1007/978-3-642-25566-3_7
68 schema:sdDatePublished 2022-01-01T19:24
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Nd5bc54a0475b4a2e8d8ee792b97b7d19
71 schema:url https://doi.org/10.1007/978-3-642-25566-3_7
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N1eaae0ae8f5e4f94aa2ddeb12426a340 rdf:first sg:person.07750750604.05
76 rdf:rest N850a6b0bf0ce4d3da9aa213d26293ffe
77 N31627b824d274fad898cffead28e21a6 schema:isbn 978-3-642-25565-6
78 978-3-642-25566-3
79 schema:name Learning and Intelligent Optimization
80 rdf:type schema:Book
81 N3aaa55173fb549a0ac82949e659f9127 schema:familyName Coello
82 schema:givenName Carlos A. Coello
83 rdf:type schema:Person
84 N3b563cef822a43e988eb3bdf5944c26c schema:name dimensions_id
85 schema:value pub.1010706779
86 rdf:type schema:PropertyValue
87 N6fc20d6fb9104627b278b1b2f67ef0cf rdf:first sg:person.010261063603.03
88 rdf:rest rdf:nil
89 N850a6b0bf0ce4d3da9aa213d26293ffe rdf:first sg:person.011172121105.54
90 rdf:rest N6fc20d6fb9104627b278b1b2f67ef0cf
91 Nbfc4dd080b674cbd8302de6467cff8e7 schema:name Springer Nature
92 rdf:type schema:Organisation
93 Nc8d9a7634ec347d4b95c33c9ad9e1c19 rdf:first N3aaa55173fb549a0ac82949e659f9127
94 rdf:rest rdf:nil
95 Nd5bc54a0475b4a2e8d8ee792b97b7d19 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Nd7d6ee4047d944849850ebff6a8d42e1 schema:name doi
98 schema:value 10.1007/978-3-642-25566-3_7
99 rdf:type schema:PropertyValue
100 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
101 schema:name Biological Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
104 schema:name Genetics
105 rdf:type schema:DefinedTerm
106 sg:person.010261063603.03 schema:affiliation grid-institutes:grid.263518.b
107 schema:familyName Tanaka
108 schema:givenName Kiyoshi
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010261063603.03
110 rdf:type schema:Person
111 sg:person.011172121105.54 schema:affiliation grid-institutes:grid.263518.b
112 schema:familyName Aguirre
113 schema:givenName Hernán E.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011172121105.54
115 rdf:type schema:Person
116 sg:person.07750750604.05 schema:affiliation grid-institutes:grid.266298.1
117 schema:familyName Sato
118 schema:givenName Hiroyuki
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750750604.05
120 rdf:type schema:Person
121 grid-institutes:grid.263518.b schema:alternateName Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan
122 schema:name Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan
123 International Young Researcher Empowerment Center, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan
124 rdf:type schema:Organization
125 grid-institutes:grid.266298.1 schema:alternateName Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan
126 schema:name Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...