Genetic Diversity and Effective Crossover in Evolutionary Many-objective Optimization View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Hiroyuki Sato , Hernán E. Aguirre , Kiyoshi Tanaka

ABSTRACT

In this work, we analyze genetic diversity of Pareto optimal solutions (POS) and study effective crossover operators in evolutionary many-objective optimization. First we examine the diversity of genes in the true POS on many-objective 0/1 knapsack problems with up to 20 items (bits), showing that genes in POS become noticeably diverse as we increase the number of objectives. We also verify the effectiveness of conventional two-point crossover, Local Recombination that selects mating parents based on proximity in objective space, and two-point and uniform crossover operators Controlling the maximum number of Crossed Genes (CCG). We use NSGA-II, SPEA2, IBEAε + and MSOPS, which adopt different selection methods, and many-objective 0/1 knapsack problems with n = {100,250,500,750,1000} items (bits) and m = {2,4,6,8,10} objectives to verify the search performance of each crossover operator. Simulation results reveal that Local Recombination and CCG operators significantly improve search performance especially for NSGA-II and MSOPS, which have high diversity of genes in the population. Also, results show that CCG operators achieve higher search performance than Local Recombination for m ≥ 4 objectives and that their effectiveness becomes larger as the number of objectives m increases. More... »

PAGES

91-105

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-25566-3_7

DOI

http://dx.doi.org/10.1007/978-3-642-25566-3_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010706779


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.266298.1", 
          "name": [
            "Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sato", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.07750750604.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750750604.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan", 
          "id": "http://www.grid.ac/institutes/grid.263518.b", 
          "name": [
            "International Young Researcher Empowerment Center, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan", 
            "Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aguirre", 
        "givenName": "Hern\u00e1n E.", 
        "id": "sg:person.011172121105.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011172121105.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan", 
          "id": "http://www.grid.ac/institutes/grid.263518.b", 
          "name": [
            "Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanaka", 
        "givenName": "Kiyoshi", 
        "id": "sg:person.010261063603.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010261063603.03"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "In this work, we analyze genetic diversity of Pareto optimal solutions (POS) and study effective crossover operators in evolutionary many-objective optimization. First we examine the diversity of genes in the true POS on many-objective 0/1 knapsack problems with up to 20 items (bits), showing that genes in POS become noticeably diverse as we increase the number of objectives. We also verify the effectiveness of conventional two-point crossover, Local Recombination that selects mating parents based on proximity in objective space, and two-point and uniform crossover operators Controlling the maximum number of Crossed Genes (CCG). We use NSGA-II, SPEA2, IBEA\u03b5\u2009+\u2009 and MSOPS, which adopt different selection methods, and many-objective 0/1 knapsack problems with n\u2009=\u2009{100,250,500,750,1000} items (bits) and m\u2009=\u2009{2,4,6,8,10} objectives to verify the search performance of each crossover operator. Simulation results reveal that Local Recombination and CCG operators significantly improve search performance especially for NSGA-II and MSOPS, which have high diversity of genes in the population. Also, results show that CCG operators achieve higher search performance than Local Recombination for m\u2009\u2265\u20094 objectives and that their effectiveness becomes larger as the number of objectives m increases.", 
    "editor": [
      {
        "familyName": "Coello", 
        "givenName": "Carlos A. Coello", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-25566-3_7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-25565-6", 
        "978-3-642-25566-3"
      ], 
      "name": "Learning and Intelligent Optimization", 
      "type": "Book"
    }, 
    "keywords": [
      "Pareto optimal solutions", 
      "number of objectives", 
      "CCG operators", 
      "objective optimization", 
      "crossover operator", 
      "true Pareto optimal solutions", 
      "knapsack problem", 
      "uniform crossover operator", 
      "high search performance", 
      "effective crossover operators", 
      "objective space", 
      "optimal solution", 
      "effective crossover", 
      "two-point", 
      "search performance", 
      "operators", 
      "MSOPS", 
      "NSGA", 
      "local recombination", 
      "simulation results", 
      "different selection methods", 
      "two-point crossover", 
      "optimization", 
      "selection method", 
      "problem", 
      "SPEA2", 
      "maximum number", 
      "effectiveness", 
      "space", 
      "performance", 
      "solution", 
      "crossover", 
      "number", 
      "objective", 
      "results", 
      "work", 
      "diversity of genes", 
      "diversity", 
      "items", 
      "proximity", 
      "population", 
      "high diversity", 
      "genetic diversity", 
      "recombination", 
      "increase", 
      "genes", 
      "parents", 
      "method", 
      "IBEA\u03b5"
    ], 
    "name": "Genetic Diversity and Effective Crossover in Evolutionary Many-objective Optimization", 
    "pagination": "91-105", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010706779"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-25566-3_7"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-25566-3_7", 
      "https://app.dimensions.ai/details/publication/pub.1010706779"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_222.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-25566-3_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25566-3_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25566-3_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25566-3_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25566-3_7'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      23 PREDICATES      75 URIs      68 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-25566-3_7 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Ne44ad1a615d44573aa8bb38e16538aed
4 schema:datePublished 2011
5 schema:datePublishedReg 2011-01-01
6 schema:description In this work, we analyze genetic diversity of Pareto optimal solutions (POS) and study effective crossover operators in evolutionary many-objective optimization. First we examine the diversity of genes in the true POS on many-objective 0/1 knapsack problems with up to 20 items (bits), showing that genes in POS become noticeably diverse as we increase the number of objectives. We also verify the effectiveness of conventional two-point crossover, Local Recombination that selects mating parents based on proximity in objective space, and two-point and uniform crossover operators Controlling the maximum number of Crossed Genes (CCG). We use NSGA-II, SPEA2, IBEAε +  and MSOPS, which adopt different selection methods, and many-objective 0/1 knapsack problems with n = {100,250,500,750,1000} items (bits) and m = {2,4,6,8,10} objectives to verify the search performance of each crossover operator. Simulation results reveal that Local Recombination and CCG operators significantly improve search performance especially for NSGA-II and MSOPS, which have high diversity of genes in the population. Also, results show that CCG operators achieve higher search performance than Local Recombination for m ≥ 4 objectives and that their effectiveness becomes larger as the number of objectives m increases.
7 schema:editor Ne0d38e7743594f3c975cfc8a3216b6fa
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N1cf08435dcf84f87a699055229cc15e5
12 schema:keywords CCG operators
13 IBEAε
14 MSOPS
15 NSGA
16 Pareto optimal solutions
17 SPEA2
18 crossover
19 crossover operator
20 different selection methods
21 diversity
22 diversity of genes
23 effective crossover
24 effective crossover operators
25 effectiveness
26 genes
27 genetic diversity
28 high diversity
29 high search performance
30 increase
31 items
32 knapsack problem
33 local recombination
34 maximum number
35 method
36 number
37 number of objectives
38 objective
39 objective optimization
40 objective space
41 operators
42 optimal solution
43 optimization
44 parents
45 performance
46 population
47 problem
48 proximity
49 recombination
50 results
51 search performance
52 selection method
53 simulation results
54 solution
55 space
56 true Pareto optimal solutions
57 two-point
58 two-point crossover
59 uniform crossover operator
60 work
61 schema:name Genetic Diversity and Effective Crossover in Evolutionary Many-objective Optimization
62 schema:pagination 91-105
63 schema:productId N4259442333224d42a2a4c8d82ebd8ac6
64 N9a615b11bf7142269e6a4af2473e3b3d
65 schema:publisher N8799268055cb4b5fab9ca11000cd72d5
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010706779
67 https://doi.org/10.1007/978-3-642-25566-3_7
68 schema:sdDatePublished 2021-12-01T20:00
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Nfe1f98839f794bfd8dbebec7904f5964
71 schema:url https://doi.org/10.1007/978-3-642-25566-3_7
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N1cf08435dcf84f87a699055229cc15e5 schema:isbn 978-3-642-25565-6
76 978-3-642-25566-3
77 schema:name Learning and Intelligent Optimization
78 rdf:type schema:Book
79 N2835f785117d4a97b6ef6a6cd92902fc rdf:first sg:person.010261063603.03
80 rdf:rest rdf:nil
81 N4259442333224d42a2a4c8d82ebd8ac6 schema:name dimensions_id
82 schema:value pub.1010706779
83 rdf:type schema:PropertyValue
84 N480c0d8ac5ad48379261de66183a134c schema:familyName Coello
85 schema:givenName Carlos A. Coello
86 rdf:type schema:Person
87 N8799268055cb4b5fab9ca11000cd72d5 schema:name Springer Nature
88 rdf:type schema:Organisation
89 N895f58450a174146b90d0b3105024f9d rdf:first sg:person.011172121105.54
90 rdf:rest N2835f785117d4a97b6ef6a6cd92902fc
91 N9a615b11bf7142269e6a4af2473e3b3d schema:name doi
92 schema:value 10.1007/978-3-642-25566-3_7
93 rdf:type schema:PropertyValue
94 Ne0d38e7743594f3c975cfc8a3216b6fa rdf:first N480c0d8ac5ad48379261de66183a134c
95 rdf:rest rdf:nil
96 Ne44ad1a615d44573aa8bb38e16538aed rdf:first sg:person.07750750604.05
97 rdf:rest N895f58450a174146b90d0b3105024f9d
98 Nfe1f98839f794bfd8dbebec7904f5964 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
101 schema:name Biological Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
104 schema:name Genetics
105 rdf:type schema:DefinedTerm
106 sg:person.010261063603.03 schema:affiliation grid-institutes:grid.263518.b
107 schema:familyName Tanaka
108 schema:givenName Kiyoshi
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010261063603.03
110 rdf:type schema:Person
111 sg:person.011172121105.54 schema:affiliation grid-institutes:grid.263518.b
112 schema:familyName Aguirre
113 schema:givenName Hernán E.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011172121105.54
115 rdf:type schema:Person
116 sg:person.07750750604.05 schema:affiliation grid-institutes:grid.266298.1
117 schema:familyName Sato
118 schema:givenName Hiroyuki
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750750604.05
120 rdf:type schema:Person
121 grid-institutes:grid.263518.b schema:alternateName Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan
122 schema:name Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan
123 International Young Researcher Empowerment Center, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan
124 rdf:type schema:Organization
125 grid-institutes:grid.266298.1 schema:alternateName Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan
126 schema:name Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...