Contact and Friction of One- and Two-Dimensional Nanostructures View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Yin Zhang , Ya-pu Zhao

ABSTRACT

Because their thickness dimension is very small compared with other dimensions, the one-dimensional (1D) nanostructures (such as nanowire, nanotube, and nanobelt) and two-dimensional (2D) nanostructures (such as graphene) are highly prone to bend. Because of their large bending flexurality, the 1D and 2D nanostructures exhibit different contact behavior from those chunky ones. Without considering the flexurality effect, the analysis on the experimental data of 1D and 2D nanostructures can lead to different and even contradicting results/conclusions on their mechanical properties. One focus of this chapter is on what can go wrong in the indentation and three-point bending tests of 1D nanostructures if the flexurality effect is not accounted. At the same time, the 1D and 2D nanostructures also exhibit abnormal friction behavior. The assumptions of the classical contact are reviewed, and their possible deficiencies and difficulties of being used to analyze the contact and friction of 1D/2D nanostructures are also discussed. More... »

PAGES

335-361

Book

TITLE

Scanning Probe Microscopy in Nanoscience and Nanotechnology 3

ISBN

978-3-642-25413-0
978-3-642-25414-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-25414-7_13

DOI

http://dx.doi.org/10.1007/978-3-642-25414-7_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034988300


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Mechanics", 
          "id": "https://www.grid.ac/institutes/grid.458484.1", 
          "name": [
            "State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yin", 
        "id": "sg:person.010222342064.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010222342064.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mechanics", 
          "id": "https://www.grid.ac/institutes/grid.458484.1", 
          "name": [
            "State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Ya-pu", 
        "id": "sg:person.0753713013.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753713013.22"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Because their thickness dimension is very small compared with other dimensions, the one-dimensional (1D) nanostructures (such as nanowire, nanotube, and nanobelt) and two-dimensional (2D) nanostructures (such as graphene) are highly prone to bend. Because of their large bending flexurality, the 1D and 2D nanostructures exhibit different contact behavior from those chunky ones. Without considering the flexurality effect, the analysis on the experimental data of 1D and 2D nanostructures can lead to different and even contradicting results/conclusions on their mechanical properties. One focus of this chapter is on what can go wrong in the indentation and three-point bending tests of 1D nanostructures if the flexurality effect is not accounted. At the same time, the 1D and 2D nanostructures also exhibit abnormal friction behavior. The assumptions of the classical contact are reviewed, and their possible deficiencies and difficulties of being used to analyze the contact and friction of 1D/2D nanostructures are also discussed.", 
    "editor": [
      {
        "familyName": "Bhushan", 
        "givenName": "Bharat", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-25414-7_13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6982088", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4967345", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-642-25413-0", 
        "978-3-642-25414-7"
      ], 
      "name": "Scanning Probe Microscopy in Nanoscience and Nanotechnology 3", 
      "type": "Book"
    }, 
    "name": "Contact and Friction of One- and Two-Dimensional Nanostructures", 
    "pagination": "335-361", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-25414-7_13"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a6ab82168839b2dfb272262ec41c0deb3c204be630c18c956a4b683a74fde0d1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034988300"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-25414-7_13", 
      "https://app.dimensions.ai/details/publication/pub.1034988300"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000060.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-25414-7_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25414-7_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25414-7_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25414-7_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25414-7_13'


 

This table displays all metadata directly associated to this object as RDF triples.

76 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-25414-7_13 schema:about anzsrc-for:10
2 anzsrc-for:1007
3 schema:author N958471be8d39414dbff07f0df3a8a4c9
4 schema:datePublished 2012
5 schema:datePublishedReg 2012-01-01
6 schema:description Because their thickness dimension is very small compared with other dimensions, the one-dimensional (1D) nanostructures (such as nanowire, nanotube, and nanobelt) and two-dimensional (2D) nanostructures (such as graphene) are highly prone to bend. Because of their large bending flexurality, the 1D and 2D nanostructures exhibit different contact behavior from those chunky ones. Without considering the flexurality effect, the analysis on the experimental data of 1D and 2D nanostructures can lead to different and even contradicting results/conclusions on their mechanical properties. One focus of this chapter is on what can go wrong in the indentation and three-point bending tests of 1D nanostructures if the flexurality effect is not accounted. At the same time, the 1D and 2D nanostructures also exhibit abnormal friction behavior. The assumptions of the classical contact are reviewed, and their possible deficiencies and difficulties of being used to analyze the contact and friction of 1D/2D nanostructures are also discussed.
7 schema:editor Nd6cb70f28fdd49a8b7756bfd874fcf30
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N9d9989e329c7436c88db32571093be74
12 schema:name Contact and Friction of One- and Two-Dimensional Nanostructures
13 schema:pagination 335-361
14 schema:productId N78fff98d637943c08143103d4e4a0c08
15 Na9631a769ce148f6bda3cca22b13eaf2
16 Nc5db4789ff874ac29a6add0a1bb81229
17 schema:publisher N60df44144329430a919ab4003afe39ff
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034988300
19 https://doi.org/10.1007/978-3-642-25414-7_13
20 schema:sdDatePublished 2019-04-15T14:12
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N0bb26e9891ea4533bdad96ddf25a0d1c
23 schema:url http://link.springer.com/10.1007/978-3-642-25414-7_13
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N0bb26e9891ea4533bdad96ddf25a0d1c schema:name Springer Nature - SN SciGraph project
28 rdf:type schema:Organization
29 N1387cec70243462a9c8f9ea2f2e87bbf schema:familyName Bhushan
30 schema:givenName Bharat
31 rdf:type schema:Person
32 N60df44144329430a919ab4003afe39ff schema:location Berlin, Heidelberg
33 schema:name Springer Berlin Heidelberg
34 rdf:type schema:Organisation
35 N78fff98d637943c08143103d4e4a0c08 schema:name dimensions_id
36 schema:value pub.1034988300
37 rdf:type schema:PropertyValue
38 N958471be8d39414dbff07f0df3a8a4c9 rdf:first sg:person.010222342064.30
39 rdf:rest Ne30179f4192247babf37ecd8af13285b
40 N9d9989e329c7436c88db32571093be74 schema:isbn 978-3-642-25413-0
41 978-3-642-25414-7
42 schema:name Scanning Probe Microscopy in Nanoscience and Nanotechnology 3
43 rdf:type schema:Book
44 Na9631a769ce148f6bda3cca22b13eaf2 schema:name readcube_id
45 schema:value a6ab82168839b2dfb272262ec41c0deb3c204be630c18c956a4b683a74fde0d1
46 rdf:type schema:PropertyValue
47 Nc5db4789ff874ac29a6add0a1bb81229 schema:name doi
48 schema:value 10.1007/978-3-642-25414-7_13
49 rdf:type schema:PropertyValue
50 Nd6cb70f28fdd49a8b7756bfd874fcf30 rdf:first N1387cec70243462a9c8f9ea2f2e87bbf
51 rdf:rest rdf:nil
52 Ne30179f4192247babf37ecd8af13285b rdf:first sg:person.0753713013.22
53 rdf:rest rdf:nil
54 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
55 schema:name Technology
56 rdf:type schema:DefinedTerm
57 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
58 schema:name Nanotechnology
59 rdf:type schema:DefinedTerm
60 sg:grant.4967345 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-642-25414-7_13
61 rdf:type schema:MonetaryGrant
62 sg:grant.6982088 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-642-25414-7_13
63 rdf:type schema:MonetaryGrant
64 sg:person.010222342064.30 schema:affiliation https://www.grid.ac/institutes/grid.458484.1
65 schema:familyName Zhang
66 schema:givenName Yin
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010222342064.30
68 rdf:type schema:Person
69 sg:person.0753713013.22 schema:affiliation https://www.grid.ac/institutes/grid.458484.1
70 schema:familyName Zhao
71 schema:givenName Ya-pu
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753713013.22
73 rdf:type schema:Person
74 https://www.grid.ac/institutes/grid.458484.1 schema:alternateName Institute of Mechanics
75 schema:name State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Beijing, China
76 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...