Ontology type: schema:Chapter
2012
AUTHORS ABSTRACTWe prove convergence of the Wigner transforms of solutions to the Schrödinger equation, in a semiclassical limit, to solutions to the Liouville equation. We are able to include in our convergence result rough or singular potentials (with Coulomb repulsive singularities), provided convergence is understood for “almost all” initial data. The rigorous statement involves a suitable extension of the DiPerna–Lions theory to the infinite-dimensional space of probability measure, where both the Wigner and the Liouville dynamics can be read. More... »
PAGES1-11
Nonlinear Partial Differential Equations
ISBN
978-3-642-25360-7
978-3-642-25361-4
http://scigraph.springernature.com/pub.10.1007/978-3-642-25361-4_1
DOIhttp://dx.doi.org/10.1007/978-3-642-25361-4_1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1033348578
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Scuola Normale Superiore di Pisa",
"id": "https://www.grid.ac/institutes/grid.6093.c",
"name": [
"Scuola Normale Superiore, Pisa, Italy"
],
"type": "Organization"
},
"familyName": "Ambrosio",
"givenName": "Luigi",
"id": "sg:person.012621721115.68",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00023-003-0138-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007714807",
"https://doi.org/10.1007/s00023-003-0138-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01393835",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026771304",
"https://doi.org/10.1007/bf01393835"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1027855769",
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1027855769",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/pl00004237",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031617447",
"https://doi.org/10.1007/pl00004237"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00222-004-0367-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036546922",
"https://doi.org/10.1007/s00222-004-0367-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00222-004-0367-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036546922",
"https://doi.org/10.1007/s00222-004-0367-2"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cpa.20371",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041106738"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.crma.2010.01.018",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050492608"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/03605301003657835",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052216893"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4171/rmi/143",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072320417"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.24033/bsmf.2416",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083661461"
],
"type": "CreativeWork"
}
],
"datePublished": "2012",
"datePublishedReg": "2012-01-01",
"description": "We prove convergence of the Wigner transforms of solutions to the Schr\u00f6dinger equation, in a semiclassical limit, to solutions to the Liouville equation. We are able to include in our convergence result rough or singular potentials (with Coulomb repulsive singularities), provided convergence is understood for \u201calmost all\u201d initial data. The rigorous statement involves a suitable extension of the DiPerna\u2013Lions theory to the infinite-dimensional space of probability measure, where both the Wigner and the Liouville dynamics can be read.",
"editor": [
{
"familyName": "Holden",
"givenName": "Helge",
"type": "Person"
},
{
"familyName": "Karlsen",
"givenName": "Kenneth H.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-25361-4_1",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-25360-7",
"978-3-642-25361-4"
],
"name": "Nonlinear Partial Differential Equations",
"type": "Book"
},
"name": "Convergence of Wigner Transforms in a Semiclassical Limit",
"pagination": "1-11",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-25361-4_1"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"9ede083e567537b9d1a54b67b79250e536c4ee41addbde4ca577a3ee4b2aedf4"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1033348578"
]
}
],
"publisher": {
"location": "Berlin, Heidelberg",
"name": "Springer Berlin Heidelberg",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-25361-4_1",
"https://app.dimensions.ai/details/publication/pub.1033348578"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T21:59",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000263.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-642-25361-4_1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25361-4_1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25361-4_1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25361-4_1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25361-4_1'
This table displays all metadata directly associated to this object as RDF triples.
103 TRIPLES
23 PREDICATES
37 URIs
20 LITERALS
8 BLANK NODES