Wheat and Chaff – Practically Feasible Interactive Ontology Revision View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2011

AUTHORS

Nadeschda Nikitina , Birte Glimm , Sebastian Rudolph

ABSTRACT

When ontological knowledge is acquired automatically, quality control is essential. We consider the tightest possible approach – an exhaustive manual inspection of the acquired data. By using automated reasoning, we partially automate the process: after each expert decision, axioms that are entailed by the already approved statements are automatically approved, whereas axioms that would lead to an inconsistency are declined. Adequate axiom ranking strategies are essential in this setting to minimize the amount of expert decisions.In this paper, we present a generalization of the previously proposed ranking techniques which works well for arbitrary validity ratios – the proportion of valid statements within a dataset – whereas the previously described ranking functions were either tailored towards validity ratios of exactly 100% and 0% or were optimizing the worst case. The validity ratio – generally not known a priori – is continuously estimated over the course of the inspection process. We further employ partitioning techniques to significantly reduce the computational effort. We provide an implementation supporting all these optimizations as well as featuring a user front-end for successive axiom evaluation, thereby making our proposed strategy applicable to practical scenarios. This is witnessed by our evaluation showing that the novel parameterized ranking function almost achieves the maximum possible automation and that the computation time needed for each reasoning-based, automatic decision is reduced to less than one second on average for our test dataset of over 25,000 statements. More... »

PAGES

487-503

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-25073-6_31

DOI

http://dx.doi.org/10.1007/978-3-642-25073-6_31

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020373479


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute AIFB, Karlsruhe Institute of Technology, DE, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Institute AIFB, Karlsruhe Institute of Technology, DE, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikitina", 
        "givenName": "Nadeschda", 
        "id": "sg:person.016360107370.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016360107370.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Artificial Intelligence, Ulm University, DE, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Artificial Intelligence, Ulm University, DE, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glimm", 
        "givenName": "Birte", 
        "id": "sg:person.015234565343.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015234565343.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute AIFB, Karlsruhe Institute of Technology, DE, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Institute AIFB, Karlsruhe Institute of Technology, DE, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rudolph", 
        "givenName": "Sebastian", 
        "id": "sg:person.013513035621.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013513035621.20"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "When ontological knowledge is acquired automatically, quality control is essential. We consider the tightest possible approach \u2013 an exhaustive manual inspection of the acquired data. By using automated reasoning, we partially automate the process: after each expert decision, axioms that are entailed by the already approved statements are automatically approved, whereas axioms that would lead to an inconsistency are declined. Adequate axiom ranking strategies are essential in this setting to minimize the amount of expert decisions.In this paper, we present a generalization of the previously proposed ranking techniques which works well for arbitrary validity ratios \u2013 the proportion of valid statements within a dataset \u2013 whereas the previously described ranking functions were either tailored towards validity ratios of exactly 100% and 0% or were optimizing the worst case. The validity ratio \u2013 generally not known a priori \u2013 is continuously estimated over the course of the inspection process. We further employ partitioning techniques to significantly reduce the computational effort. We provide an implementation supporting all these optimizations as well as featuring a user front-end for successive axiom evaluation, thereby making our proposed strategy applicable to practical scenarios. This is witnessed by our evaluation showing that the novel parameterized ranking function almost achieves the maximum possible automation and that the computation time needed for each reasoning-based, automatic decision is reduced to less than one second on average for our test dataset of over 25,000 statements.", 
    "editor": [
      {
        "familyName": "Aroyo", 
        "givenName": "Lora", 
        "type": "Person"
      }, 
      {
        "familyName": "Welty", 
        "givenName": "Chris", 
        "type": "Person"
      }, 
      {
        "familyName": "Alani", 
        "givenName": "Harith", 
        "type": "Person"
      }, 
      {
        "familyName": "Taylor", 
        "givenName": "Jamie", 
        "type": "Person"
      }, 
      {
        "familyName": "Bernstein", 
        "givenName": "Abraham", 
        "type": "Person"
      }, 
      {
        "familyName": "Kagal", 
        "givenName": "Lalana", 
        "type": "Person"
      }, 
      {
        "familyName": "Noy", 
        "givenName": "Natasha", 
        "type": "Person"
      }, 
      {
        "familyName": "Blomqvist", 
        "givenName": "Eva", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-25073-6_31", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-25072-9", 
        "978-3-642-25073-6"
      ], 
      "name": "The Semantic Web \u2013 ISWC 2011", 
      "type": "Book"
    }, 
    "keywords": [
      "expert decisions", 
      "ontological knowledge", 
      "automatic decision", 
      "manual inspection", 
      "ranking strategies", 
      "ranking techniques", 
      "computation time", 
      "test dataset", 
      "partitioning techniques", 
      "practical scenarios", 
      "inspection process", 
      "ontology revision", 
      "computational effort", 
      "worst case", 
      "possible automation", 
      "dataset", 
      "possible approaches", 
      "users", 
      "automation", 
      "decisions", 
      "reasoning", 
      "implementation", 
      "scenarios", 
      "technique", 
      "axioms", 
      "optimization", 
      "inspection", 
      "quality control", 
      "valid statements", 
      "evaluation", 
      "process", 
      "inconsistencies", 
      "strategies", 
      "knowledge", 
      "generalization", 
      "statements", 
      "data", 
      "efforts", 
      "time", 
      "function", 
      "amount", 
      "novel", 
      "setting", 
      "control", 
      "validity ratio", 
      "chaff", 
      "cases", 
      "average", 
      "course", 
      "ratio", 
      "revision", 
      "proportion", 
      "wheat", 
      "paper", 
      "approach"
    ], 
    "name": "Wheat and Chaff \u2013 Practically Feasible Interactive Ontology Revision", 
    "pagination": "487-503", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020373479"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-25073-6_31"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-25073-6_31", 
      "https://app.dimensions.ai/details/publication/pub.1020373479"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_180.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-25073-6_31"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25073-6_31'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25073-6_31'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25073-6_31'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-25073-6_31'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      23 PREDICATES      81 URIs      74 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-25073-6_31 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nffed0171bd7a438aa92a7b8eb9983a24
4 schema:datePublished 2011
5 schema:datePublishedReg 2011-01-01
6 schema:description When ontological knowledge is acquired automatically, quality control is essential. We consider the tightest possible approach – an exhaustive manual inspection of the acquired data. By using automated reasoning, we partially automate the process: after each expert decision, axioms that are entailed by the already approved statements are automatically approved, whereas axioms that would lead to an inconsistency are declined. Adequate axiom ranking strategies are essential in this setting to minimize the amount of expert decisions.In this paper, we present a generalization of the previously proposed ranking techniques which works well for arbitrary validity ratios – the proportion of valid statements within a dataset – whereas the previously described ranking functions were either tailored towards validity ratios of exactly 100% and 0% or were optimizing the worst case. The validity ratio – generally not known a priori – is continuously estimated over the course of the inspection process. We further employ partitioning techniques to significantly reduce the computational effort. We provide an implementation supporting all these optimizations as well as featuring a user front-end for successive axiom evaluation, thereby making our proposed strategy applicable to practical scenarios. This is witnessed by our evaluation showing that the novel parameterized ranking function almost achieves the maximum possible automation and that the computation time needed for each reasoning-based, automatic decision is reduced to less than one second on average for our test dataset of over 25,000 statements.
7 schema:editor N081956b2c2304e2ebb6b192e16e37a56
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Nb7be69c8ea11442e9255b37b347de934
12 schema:keywords amount
13 approach
14 automatic decision
15 automation
16 average
17 axioms
18 cases
19 chaff
20 computation time
21 computational effort
22 control
23 course
24 data
25 dataset
26 decisions
27 efforts
28 evaluation
29 expert decisions
30 function
31 generalization
32 implementation
33 inconsistencies
34 inspection
35 inspection process
36 knowledge
37 manual inspection
38 novel
39 ontological knowledge
40 ontology revision
41 optimization
42 paper
43 partitioning techniques
44 possible approaches
45 possible automation
46 practical scenarios
47 process
48 proportion
49 quality control
50 ranking strategies
51 ranking techniques
52 ratio
53 reasoning
54 revision
55 scenarios
56 setting
57 statements
58 strategies
59 technique
60 test dataset
61 time
62 users
63 valid statements
64 validity ratio
65 wheat
66 worst case
67 schema:name Wheat and Chaff – Practically Feasible Interactive Ontology Revision
68 schema:pagination 487-503
69 schema:productId N20be3bfdf23a4c6dba0698bcc9b0805b
70 Nd61e5764479243bc95fe8c7bc6999877
71 schema:publisher Ne8fac8349af64f80b917f391c75287d7
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020373479
73 https://doi.org/10.1007/978-3-642-25073-6_31
74 schema:sdDatePublished 2022-06-01T22:28
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N0a9084a855604cbeb3d84ca21025312c
77 schema:url https://doi.org/10.1007/978-3-642-25073-6_31
78 sgo:license sg:explorer/license/
79 sgo:sdDataset chapters
80 rdf:type schema:Chapter
81 N0793396320674b0bbb6695ec5e69a985 rdf:first Nd7c463de84c44be69b82d2646fed9dfd
82 rdf:rest N8183fba5a85c43b8b8eff9fbff194b4d
83 N081956b2c2304e2ebb6b192e16e37a56 rdf:first Ne707303667894d15b0c5b1531c57fc86
84 rdf:rest N0793396320674b0bbb6695ec5e69a985
85 N0a9084a855604cbeb3d84ca21025312c schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N0f0016f3aef44717976e412e94efc24b rdf:first sg:person.015234565343.35
88 rdf:rest Ne664d281f71848df9777cb58d7a292af
89 N20be3bfdf23a4c6dba0698bcc9b0805b schema:name doi
90 schema:value 10.1007/978-3-642-25073-6_31
91 rdf:type schema:PropertyValue
92 N38700d5a664548ccb554f5e035e3a4ef rdf:first N932ed352e7f441968f8b6030c75dbfdc
93 rdf:rest N891f7d4ca2784630959cac58ce4dc115
94 N3d80bdcd60c64355a15a5bd7124e7004 schema:familyName Alani
95 schema:givenName Harith
96 rdf:type schema:Person
97 N6a38c7ee3c384d028d6056c8bab301dd schema:familyName Taylor
98 schema:givenName Jamie
99 rdf:type schema:Person
100 N73d48f0256eb451e9713ab36b60a7c80 schema:familyName Noy
101 schema:givenName Natasha
102 rdf:type schema:Person
103 N8183fba5a85c43b8b8eff9fbff194b4d rdf:first N3d80bdcd60c64355a15a5bd7124e7004
104 rdf:rest Nc4f9d870d7994fd19b2fa5bdff813911
105 N891f7d4ca2784630959cac58ce4dc115 rdf:first Nacfbf949d67c4ed88a1a73a3c6ec7e6b
106 rdf:rest Nbeb05494682a406a994876bd3e54a2de
107 N8a7d2f04304e4fb0b078fa45296bbcaf schema:familyName Blomqvist
108 schema:givenName Eva
109 rdf:type schema:Person
110 N932ed352e7f441968f8b6030c75dbfdc schema:familyName Bernstein
111 schema:givenName Abraham
112 rdf:type schema:Person
113 Nacfbf949d67c4ed88a1a73a3c6ec7e6b schema:familyName Kagal
114 schema:givenName Lalana
115 rdf:type schema:Person
116 Nb7be69c8ea11442e9255b37b347de934 schema:isbn 978-3-642-25072-9
117 978-3-642-25073-6
118 schema:name The Semantic Web – ISWC 2011
119 rdf:type schema:Book
120 Nbeb05494682a406a994876bd3e54a2de rdf:first N73d48f0256eb451e9713ab36b60a7c80
121 rdf:rest Nff5d1d0925484d4f803ecaf60141502f
122 Nc4f9d870d7994fd19b2fa5bdff813911 rdf:first N6a38c7ee3c384d028d6056c8bab301dd
123 rdf:rest N38700d5a664548ccb554f5e035e3a4ef
124 Nd61e5764479243bc95fe8c7bc6999877 schema:name dimensions_id
125 schema:value pub.1020373479
126 rdf:type schema:PropertyValue
127 Nd7c463de84c44be69b82d2646fed9dfd schema:familyName Welty
128 schema:givenName Chris
129 rdf:type schema:Person
130 Ne664d281f71848df9777cb58d7a292af rdf:first sg:person.013513035621.20
131 rdf:rest rdf:nil
132 Ne707303667894d15b0c5b1531c57fc86 schema:familyName Aroyo
133 schema:givenName Lora
134 rdf:type schema:Person
135 Ne8fac8349af64f80b917f391c75287d7 schema:name Springer Nature
136 rdf:type schema:Organisation
137 Nff5d1d0925484d4f803ecaf60141502f rdf:first N8a7d2f04304e4fb0b078fa45296bbcaf
138 rdf:rest rdf:nil
139 Nffed0171bd7a438aa92a7b8eb9983a24 rdf:first sg:person.016360107370.05
140 rdf:rest N0f0016f3aef44717976e412e94efc24b
141 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
142 schema:name Information and Computing Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
145 schema:name Artificial Intelligence and Image Processing
146 rdf:type schema:DefinedTerm
147 sg:person.013513035621.20 schema:affiliation grid-institutes:grid.7892.4
148 schema:familyName Rudolph
149 schema:givenName Sebastian
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013513035621.20
151 rdf:type schema:Person
152 sg:person.015234565343.35 schema:affiliation grid-institutes:grid.6582.9
153 schema:familyName Glimm
154 schema:givenName Birte
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015234565343.35
156 rdf:type schema:Person
157 sg:person.016360107370.05 schema:affiliation grid-institutes:grid.7892.4
158 schema:familyName Nikitina
159 schema:givenName Nadeschda
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016360107370.05
161 rdf:type schema:Person
162 grid-institutes:grid.6582.9 schema:alternateName Institute of Artificial Intelligence, Ulm University, DE, Germany
163 schema:name Institute of Artificial Intelligence, Ulm University, DE, Germany
164 rdf:type schema:Organization
165 grid-institutes:grid.7892.4 schema:alternateName Institute AIFB, Karlsruhe Institute of Technology, DE, Germany
166 schema:name Institute AIFB, Karlsruhe Institute of Technology, DE, Germany
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...