Sparse Coding Image Denoising Based on Saliency Map Weight View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Haohua Zhao , Liqing Zhang

ABSTRACT

Saliency maps provide a measurement of people’s attention to images. People pay more attention to salient regions and perceive more information in them. Image denoising enhances image quality by reducing the noise in contaminated images. Here we implement an algorithm framework to use a saliency map as weight to manage tradeoffs in denoising using sparse coding. Computer simulations confirm that the proposed method achieves better performance than a method without the saliency map. More... »

PAGES

308-315

Book

TITLE

Neural Information Processing

ISBN

978-3-642-24957-0
978-3-642-24958-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-24958-7_36

DOI

http://dx.doi.org/10.1007/978-3-642-24958-7_36

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023862676


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shanghai Jiao Tong University", 
          "id": "https://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Haohua", 
        "id": "sg:person.07757402535.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07757402535.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Jiao Tong University", 
          "id": "https://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Liqing", 
        "id": "sg:person.01257443723.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257443723.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1109/34.730558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2006.881969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2006.881199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061800223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2007.4371128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094587633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2009.5459452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095173442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/acssc.1993.342465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095254645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2007.383267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095570599"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "Saliency maps provide a measurement of people\u2019s attention to images. People pay more attention to salient regions and perceive more information in them. Image denoising enhances image quality by reducing the noise in contaminated images. Here we implement an algorithm framework to use a saliency map as weight to manage tradeoffs in denoising using sparse coding. Computer simulations confirm that the proposed method achieves better performance than a method without the saliency map.", 
    "editor": [
      {
        "familyName": "Lu", 
        "givenName": "Bao-Liang", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhang", 
        "givenName": "Liqing", 
        "type": "Person"
      }, 
      {
        "familyName": "Kwok", 
        "givenName": "James", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-24958-7_36", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-24957-0", 
        "978-3-642-24958-7"
      ], 
      "name": "Neural Information Processing", 
      "type": "Book"
    }, 
    "name": "Sparse Coding Image Denoising Based on Saliency Map Weight", 
    "pagination": "308-315", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-24958-7_36"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "71af92aca5c800ae0bfbc1b76702eec40ed233635208527253d07fda78fd3926"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023862676"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-24958-7_36", 
      "https://app.dimensions.ai/details/publication/pub.1023862676"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T23:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000258.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-24958-7_36"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24958-7_36'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24958-7_36'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24958-7_36'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24958-7_36'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-24958-7_36 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N586a14d83635459cbdd75fb883997b58
4 schema:citation https://doi.org/10.1109/34.730558
5 https://doi.org/10.1109/acssc.1993.342465
6 https://doi.org/10.1109/cvpr.2007.383267
7 https://doi.org/10.1109/iccv.2009.5459452
8 https://doi.org/10.1109/ijcnn.2007.4371128
9 https://doi.org/10.1109/tip.2006.881969
10 https://doi.org/10.1109/tsp.2006.881199
11 schema:datePublished 2011
12 schema:datePublishedReg 2011-01-01
13 schema:description Saliency maps provide a measurement of people’s attention to images. People pay more attention to salient regions and perceive more information in them. Image denoising enhances image quality by reducing the noise in contaminated images. Here we implement an algorithm framework to use a saliency map as weight to manage tradeoffs in denoising using sparse coding. Computer simulations confirm that the proposed method achieves better performance than a method without the saliency map.
14 schema:editor Ncd56519ba15248e696a2e3ab0d14f8fb
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N6999cd63c7ec49d6b13a7d63ba7affde
19 schema:name Sparse Coding Image Denoising Based on Saliency Map Weight
20 schema:pagination 308-315
21 schema:productId N24f739ede74b422abdc38adaa8110f72
22 Ncbaf886bec86454795774a9a80fb9f01
23 Ndb35a2c3874b4de2b6dda401c8d0f107
24 schema:publisher Ndb1d27c4a8cc464d94df40a51d59db80
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023862676
26 https://doi.org/10.1007/978-3-642-24958-7_36
27 schema:sdDatePublished 2019-04-15T23:52
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher Nf131769ea1f544288b88dc95622f18b9
30 schema:url http://link.springer.com/10.1007/978-3-642-24958-7_36
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N21a20407fe4d4af1a14de5f22c16b066 rdf:first Ncb128a25c5bc4246843b0769edb4a130
35 rdf:rest N427b68e90476445ea04c4a7166adba95
36 N24f739ede74b422abdc38adaa8110f72 schema:name dimensions_id
37 schema:value pub.1023862676
38 rdf:type schema:PropertyValue
39 N427b68e90476445ea04c4a7166adba95 rdf:first N7d35bc0bd1b84a15a46658cf3cf4612d
40 rdf:rest rdf:nil
41 N586a14d83635459cbdd75fb883997b58 rdf:first sg:person.07757402535.42
42 rdf:rest N8eeb5ce291014b8baad5f50984ebe0fd
43 N6999cd63c7ec49d6b13a7d63ba7affde schema:isbn 978-3-642-24957-0
44 978-3-642-24958-7
45 schema:name Neural Information Processing
46 rdf:type schema:Book
47 N7d35bc0bd1b84a15a46658cf3cf4612d schema:familyName Kwok
48 schema:givenName James
49 rdf:type schema:Person
50 N8eeb5ce291014b8baad5f50984ebe0fd rdf:first sg:person.01257443723.62
51 rdf:rest rdf:nil
52 Nb20a5369308644ec9a913cba8fdcaed7 schema:familyName Lu
53 schema:givenName Bao-Liang
54 rdf:type schema:Person
55 Ncb128a25c5bc4246843b0769edb4a130 schema:familyName Zhang
56 schema:givenName Liqing
57 rdf:type schema:Person
58 Ncbaf886bec86454795774a9a80fb9f01 schema:name doi
59 schema:value 10.1007/978-3-642-24958-7_36
60 rdf:type schema:PropertyValue
61 Ncd56519ba15248e696a2e3ab0d14f8fb rdf:first Nb20a5369308644ec9a913cba8fdcaed7
62 rdf:rest N21a20407fe4d4af1a14de5f22c16b066
63 Ndb1d27c4a8cc464d94df40a51d59db80 schema:location Berlin, Heidelberg
64 schema:name Springer Berlin Heidelberg
65 rdf:type schema:Organisation
66 Ndb35a2c3874b4de2b6dda401c8d0f107 schema:name readcube_id
67 schema:value 71af92aca5c800ae0bfbc1b76702eec40ed233635208527253d07fda78fd3926
68 rdf:type schema:PropertyValue
69 Nf131769ea1f544288b88dc95622f18b9 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information and Computing Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
75 schema:name Artificial Intelligence and Image Processing
76 rdf:type schema:DefinedTerm
77 sg:person.01257443723.62 schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
78 schema:familyName Zhang
79 schema:givenName Liqing
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257443723.62
81 rdf:type schema:Person
82 sg:person.07757402535.42 schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
83 schema:familyName Zhao
84 schema:givenName Haohua
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07757402535.42
86 rdf:type schema:Person
87 https://doi.org/10.1109/34.730558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156881
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1109/acssc.1993.342465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095254645
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1109/cvpr.2007.383267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095570599
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1109/iccv.2009.5459452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095173442
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/ijcnn.2007.4371128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094587633
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/tip.2006.881969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641581
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/tsp.2006.881199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061800223
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.16821.3c schema:alternateName Shanghai Jiao Tong University
102 schema:name MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
103 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...