Sparse Coding Image Denoising Based on Saliency Map Weight View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Haohua Zhao , Liqing Zhang

ABSTRACT

Saliency maps provide a measurement of people’s attention to images. People pay more attention to salient regions and perceive more information in them. Image denoising enhances image quality by reducing the noise in contaminated images. Here we implement an algorithm framework to use a saliency map as weight to manage tradeoffs in denoising using sparse coding. Computer simulations confirm that the proposed method achieves better performance than a method without the saliency map. More... »

PAGES

308-315

Book

TITLE

Neural Information Processing

ISBN

978-3-642-24957-0
978-3-642-24958-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-24958-7_36

DOI

http://dx.doi.org/10.1007/978-3-642-24958-7_36

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023862676


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shanghai Jiao Tong University", 
          "id": "https://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Haohua", 
        "id": "sg:person.07757402535.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07757402535.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Jiao Tong University", 
          "id": "https://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Liqing", 
        "id": "sg:person.01257443723.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257443723.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1109/34.730558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2006.881969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2006.881199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061800223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2007.4371128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094587633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2009.5459452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095173442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/acssc.1993.342465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095254645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2007.383267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095570599"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "Saliency maps provide a measurement of people\u2019s attention to images. People pay more attention to salient regions and perceive more information in them. Image denoising enhances image quality by reducing the noise in contaminated images. Here we implement an algorithm framework to use a saliency map as weight to manage tradeoffs in denoising using sparse coding. Computer simulations confirm that the proposed method achieves better performance than a method without the saliency map.", 
    "editor": [
      {
        "familyName": "Lu", 
        "givenName": "Bao-Liang", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhang", 
        "givenName": "Liqing", 
        "type": "Person"
      }, 
      {
        "familyName": "Kwok", 
        "givenName": "James", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-24958-7_36", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-24957-0", 
        "978-3-642-24958-7"
      ], 
      "name": "Neural Information Processing", 
      "type": "Book"
    }, 
    "name": "Sparse Coding Image Denoising Based on Saliency Map Weight", 
    "pagination": "308-315", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-24958-7_36"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "71af92aca5c800ae0bfbc1b76702eec40ed233635208527253d07fda78fd3926"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023862676"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-24958-7_36", 
      "https://app.dimensions.ai/details/publication/pub.1023862676"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T23:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000258.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-24958-7_36"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24958-7_36'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24958-7_36'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24958-7_36'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24958-7_36'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-24958-7_36 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N63a3568b5fe74ddb814d0fd779a467cb
4 schema:citation https://doi.org/10.1109/34.730558
5 https://doi.org/10.1109/acssc.1993.342465
6 https://doi.org/10.1109/cvpr.2007.383267
7 https://doi.org/10.1109/iccv.2009.5459452
8 https://doi.org/10.1109/ijcnn.2007.4371128
9 https://doi.org/10.1109/tip.2006.881969
10 https://doi.org/10.1109/tsp.2006.881199
11 schema:datePublished 2011
12 schema:datePublishedReg 2011-01-01
13 schema:description Saliency maps provide a measurement of people’s attention to images. People pay more attention to salient regions and perceive more information in them. Image denoising enhances image quality by reducing the noise in contaminated images. Here we implement an algorithm framework to use a saliency map as weight to manage tradeoffs in denoising using sparse coding. Computer simulations confirm that the proposed method achieves better performance than a method without the saliency map.
14 schema:editor N408dfc9b29644994b001d834d804e344
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N78fd671b5cc540ca9c29cfa489d5663b
19 schema:name Sparse Coding Image Denoising Based on Saliency Map Weight
20 schema:pagination 308-315
21 schema:productId Naafc39e0ce5d48a49b53a72cf66ba8e6
22 Nb1c197f86fdc4f1eade15fbcdcc8fc66
23 Ncbae487b6a0a446cb18ca750002e0445
24 schema:publisher Na18124ee8d8e4aaab67d20ce7df81a52
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023862676
26 https://doi.org/10.1007/978-3-642-24958-7_36
27 schema:sdDatePublished 2019-04-15T23:52
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher Nbf575d007728484b94294b1d9f785fe2
30 schema:url http://link.springer.com/10.1007/978-3-642-24958-7_36
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N408dfc9b29644994b001d834d804e344 rdf:first Ne2f6cd2d929245bca15e03178612f51d
35 rdf:rest Nbe3f505222f44453ab776de45fae851d
36 N47839405de2243469439ca329624bb2c schema:familyName Kwok
37 schema:givenName James
38 rdf:type schema:Person
39 N63a3568b5fe74ddb814d0fd779a467cb rdf:first sg:person.07757402535.42
40 rdf:rest Ne44b361db7344dbda53c93bc1ae8213c
41 N78fd671b5cc540ca9c29cfa489d5663b schema:isbn 978-3-642-24957-0
42 978-3-642-24958-7
43 schema:name Neural Information Processing
44 rdf:type schema:Book
45 Na18124ee8d8e4aaab67d20ce7df81a52 schema:location Berlin, Heidelberg
46 schema:name Springer Berlin Heidelberg
47 rdf:type schema:Organisation
48 Naafc39e0ce5d48a49b53a72cf66ba8e6 schema:name readcube_id
49 schema:value 71af92aca5c800ae0bfbc1b76702eec40ed233635208527253d07fda78fd3926
50 rdf:type schema:PropertyValue
51 Nb1c197f86fdc4f1eade15fbcdcc8fc66 schema:name doi
52 schema:value 10.1007/978-3-642-24958-7_36
53 rdf:type schema:PropertyValue
54 Nbb7a27673ea048f6b41f0183965a00d1 rdf:first N47839405de2243469439ca329624bb2c
55 rdf:rest rdf:nil
56 Nbe3f505222f44453ab776de45fae851d rdf:first Ncd6d54a1246f469aa82e268821bbe883
57 rdf:rest Nbb7a27673ea048f6b41f0183965a00d1
58 Nbf575d007728484b94294b1d9f785fe2 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Ncbae487b6a0a446cb18ca750002e0445 schema:name dimensions_id
61 schema:value pub.1023862676
62 rdf:type schema:PropertyValue
63 Ncd6d54a1246f469aa82e268821bbe883 schema:familyName Zhang
64 schema:givenName Liqing
65 rdf:type schema:Person
66 Ne2f6cd2d929245bca15e03178612f51d schema:familyName Lu
67 schema:givenName Bao-Liang
68 rdf:type schema:Person
69 Ne44b361db7344dbda53c93bc1ae8213c rdf:first sg:person.01257443723.62
70 rdf:rest rdf:nil
71 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information and Computing Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
75 schema:name Artificial Intelligence and Image Processing
76 rdf:type schema:DefinedTerm
77 sg:person.01257443723.62 schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
78 schema:familyName Zhang
79 schema:givenName Liqing
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257443723.62
81 rdf:type schema:Person
82 sg:person.07757402535.42 schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
83 schema:familyName Zhao
84 schema:givenName Haohua
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07757402535.42
86 rdf:type schema:Person
87 https://doi.org/10.1109/34.730558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156881
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1109/acssc.1993.342465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095254645
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1109/cvpr.2007.383267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095570599
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1109/iccv.2009.5459452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095173442
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/ijcnn.2007.4371128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094587633
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/tip.2006.881969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641581
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/tsp.2006.881199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061800223
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.16821.3c schema:alternateName Shanghai Jiao Tong University
102 schema:name MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
103 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...