Computing Statistics under Interval and Fuzzy Uncertainty, Applications to Computer Science and Engineering View Full Text


Ontology type: schema:Book     


Book Info

DATE

2012

GENRE

Monograph

AUTHORS

Hung T. Nguyen , Vladik Kreinovich , Berlin Wu , Gang Xiang

PUBLISHER

Springer Nature

ABSTRACT

In many practical situations, we are interested in statistics characterizing a population of objects: e.g. in the mean height of people from a certain area. Most algorithms for estimating such statistics assume that the sample values are exact. In practice, sample values come from measurements, and measurements are never absolutely accurate. Sometimes, we know the exact probability distribution of the measurement inaccuracy, but often, we only know the upper bound on this inaccuracy. In this case, we have interval uncertainty: e.g. if the measured value is 1.0, and inaccuracy is bounded by 0.1, then the actual (unknown) value of the quantity can be anywhere between 1.0 - 0.1 = 0.9 and 1.0 + 0.1 = 1.1. In other cases, the values are expert estimates, and we only have fuzzy information about the estimation inaccuracy. This book shows how to compute statistics under such interval and fuzzy uncertainty. The resulting methods are applied to computer science (optimal scheduling of different processors), to information technology (maintaining privacy), to computer engineering (design of computer chips), and to data processing in geosciences, radar imaging, and structural mechanics. More... »

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-24905-1

DOI

http://dx.doi.org/10.1007/978-3-642-24905-1

ISBN

978-3-642-24904-4 | 978-3-642-24905-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004771571


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Economics, ChiangMai University, 50100, Chiangmai, Thailand", 
          "id": "http://www.grid.ac/institutes/grid.7132.7", 
          "name": [
            "Department of Economics, ChiangMai University, 50100, Chiangmai, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nguyen", 
        "givenName": "Hung T.", 
        "id": "sg:person.015415732053.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015415732053.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Texas at El Paso, 500 W. University, 79968, El Paso, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.267324.6", 
          "name": [
            "Department of Computer Science, University of Texas at El Paso, 500 W. University, 79968, El Paso, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kreinovich", 
        "givenName": "Vladik", 
        "id": "sg:person.012602771355.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012602771355.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, National Chengchi University, 116, Taipei, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.412042.1", 
          "name": [
            "Department of Mathematical Sciences, National Chengchi University, 116, Taipei, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Berlin", 
        "id": "sg:person.013021062151.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013021062151.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Biomathematics, Inc., 100 North Country Rd., 11733, Setauket, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.422751.7", 
          "name": [
            "Applied Biomathematics, Inc., 100 North Country Rd., 11733, Setauket, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiang", 
        "givenName": "Gang", 
        "id": "sg:person.013545137746.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013545137746.47"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "In many practical situations, we are interested in statistics characterizing a population of objects: e.g. in the mean height of people from a certain area. \u00a0 Most algorithms for estimating such statistics assume that the sample values are exact. In practice, sample values come from measurements, and measurements are never absolutely accurate. Sometimes, we know the exact probability distribution of the measurement inaccuracy, but often, we only know the upper bound on this inaccuracy. In this case, we have interval uncertainty: e.g. if the measured value is 1.0, and inaccuracy is bounded by 0.1, then the actual (unknown) value of the quantity can be anywhere between 1.0 - 0.1 = 0.9 and 1.0 + 0.1 = 1.1. In other cases, the values are expert estimates, and we only have fuzzy information about the estimation inaccuracy. \u00a0 This book shows how to compute statistics under such interval and fuzzy uncertainty. The resulting methods are applied to computer science (optimal scheduling of different processors), to information technology (maintaining privacy), to computer engineering (design of computer chips), and to data processing in geosciences, radar imaging, and structural mechanics.", 
    "genre": "monograph", 
    "id": "sg:pub.10.1007/978-3-642-24905-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isbn": [
      "978-3-642-24904-4", 
      "978-3-642-24905-1"
    ], 
    "keywords": [
      "computer science", 
      "fuzzy uncertainty", 
      "exact probability distribution", 
      "sample values", 
      "population of objects", 
      "most algorithms", 
      "interval uncertainty", 
      "information technology", 
      "probability distribution", 
      "data processing", 
      "computer engineering", 
      "fuzzy information", 
      "such statistics", 
      "structural mechanics", 
      "practical situations", 
      "estimation inaccuracy", 
      "measurement inaccuracies", 
      "such intervals", 
      "statistics", 
      "radar imaging", 
      "uncertainty", 
      "expert estimates", 
      "actual values", 
      "algorithm", 
      "inaccuracy", 
      "engineering", 
      "mechanics", 
      "objects", 
      "technology", 
      "processing", 
      "information", 
      "certain areas", 
      "geosciences", 
      "applications", 
      "science", 
      "estimates", 
      "measurements", 
      "values", 
      "distribution", 
      "cases", 
      "quantity", 
      "situation", 
      "method", 
      "intervals", 
      "people", 
      "mean height", 
      "area", 
      "practice", 
      "height", 
      "book", 
      "imaging", 
      "population"
    ], 
    "name": "Computing Statistics under Interval and Fuzzy Uncertainty, Applications to Computer Science and Engineering", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004771571"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-24905-1"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-24905-1", 
      "https://app.dimensions.ai/details/publication/pub.1004771571"
    ], 
    "sdDataset": "books", 
    "sdDatePublished": "2021-12-01T19:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/book/book_6.jsonl", 
    "type": "Book", 
    "url": "https://doi.org/10.1007/978-3-642-24905-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24905-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24905-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24905-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24905-1'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      21 PREDICATES      79 URIs      70 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-24905-1 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 anzsrc-for:08
4 anzsrc-for:0801
5 schema:author N3fd462ef0841448c91680ec37fe110d9
6 schema:datePublished 2012
7 schema:datePublishedReg 2012-01-01
8 schema:description In many practical situations, we are interested in statistics characterizing a population of objects: e.g. in the mean height of people from a certain area.   Most algorithms for estimating such statistics assume that the sample values are exact. In practice, sample values come from measurements, and measurements are never absolutely accurate. Sometimes, we know the exact probability distribution of the measurement inaccuracy, but often, we only know the upper bound on this inaccuracy. In this case, we have interval uncertainty: e.g. if the measured value is 1.0, and inaccuracy is bounded by 0.1, then the actual (unknown) value of the quantity can be anywhere between 1.0 - 0.1 = 0.9 and 1.0 + 0.1 = 1.1. In other cases, the values are expert estimates, and we only have fuzzy information about the estimation inaccuracy.   This book shows how to compute statistics under such interval and fuzzy uncertainty. The resulting methods are applied to computer science (optimal scheduling of different processors), to information technology (maintaining privacy), to computer engineering (design of computer chips), and to data processing in geosciences, radar imaging, and structural mechanics.
9 schema:genre monograph
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isbn 978-3-642-24904-4
13 978-3-642-24905-1
14 schema:keywords actual values
15 algorithm
16 applications
17 area
18 book
19 cases
20 certain areas
21 computer engineering
22 computer science
23 data processing
24 distribution
25 engineering
26 estimates
27 estimation inaccuracy
28 exact probability distribution
29 expert estimates
30 fuzzy information
31 fuzzy uncertainty
32 geosciences
33 height
34 imaging
35 inaccuracy
36 information
37 information technology
38 interval uncertainty
39 intervals
40 mean height
41 measurement inaccuracies
42 measurements
43 mechanics
44 method
45 most algorithms
46 objects
47 people
48 population
49 population of objects
50 practical situations
51 practice
52 probability distribution
53 processing
54 quantity
55 radar imaging
56 sample values
57 science
58 situation
59 statistics
60 structural mechanics
61 such intervals
62 such statistics
63 technology
64 uncertainty
65 values
66 schema:name Computing Statistics under Interval and Fuzzy Uncertainty, Applications to Computer Science and Engineering
67 schema:productId N8933d42f66f14a24824192b38f0b7229
68 Nabd8d8b7b4fd4756ab22cd8ae6c50246
69 schema:publisher N5ee60816e6764f92becbfcfef2f115e1
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004771571
71 https://doi.org/10.1007/978-3-642-24905-1
72 schema:sdDatePublished 2021-12-01T19:54
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Neffdf80086da4ffeb1b4735b75558cab
75 schema:url https://doi.org/10.1007/978-3-642-24905-1
76 sgo:license sg:explorer/license/
77 sgo:sdDataset books
78 rdf:type schema:Book
79 N311f37063953433c847bc9937367997c rdf:first sg:person.013545137746.47
80 rdf:rest rdf:nil
81 N3fd462ef0841448c91680ec37fe110d9 rdf:first sg:person.015415732053.58
82 rdf:rest N8a7c74e67096487aa9abf0530c6de2bf
83 N5ee60816e6764f92becbfcfef2f115e1 schema:name Springer Nature
84 rdf:type schema:Organisation
85 N653bf22820e249468561fb0566780d63 rdf:first sg:person.013021062151.59
86 rdf:rest N311f37063953433c847bc9937367997c
87 N8933d42f66f14a24824192b38f0b7229 schema:name dimensions_id
88 schema:value pub.1004771571
89 rdf:type schema:PropertyValue
90 N8a7c74e67096487aa9abf0530c6de2bf rdf:first sg:person.012602771355.27
91 rdf:rest N653bf22820e249468561fb0566780d63
92 Nabd8d8b7b4fd4756ab22cd8ae6c50246 schema:name doi
93 schema:value 10.1007/978-3-642-24905-1
94 rdf:type schema:PropertyValue
95 Neffdf80086da4ffeb1b4735b75558cab schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
98 schema:name Mathematical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
101 schema:name Statistics
102 rdf:type schema:DefinedTerm
103 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
104 schema:name Information and Computing Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
107 schema:name Artificial Intelligence and Image Processing
108 rdf:type schema:DefinedTerm
109 sg:person.012602771355.27 schema:affiliation grid-institutes:grid.267324.6
110 schema:familyName Kreinovich
111 schema:givenName Vladik
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012602771355.27
113 rdf:type schema:Person
114 sg:person.013021062151.59 schema:affiliation grid-institutes:grid.412042.1
115 schema:familyName Wu
116 schema:givenName Berlin
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013021062151.59
118 rdf:type schema:Person
119 sg:person.013545137746.47 schema:affiliation grid-institutes:grid.422751.7
120 schema:familyName Xiang
121 schema:givenName Gang
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013545137746.47
123 rdf:type schema:Person
124 sg:person.015415732053.58 schema:affiliation grid-institutes:grid.7132.7
125 schema:familyName Nguyen
126 schema:givenName Hung T.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015415732053.58
128 rdf:type schema:Person
129 grid-institutes:grid.267324.6 schema:alternateName Department of Computer Science, University of Texas at El Paso, 500 W. University, 79968, El Paso, TX, USA
130 schema:name Department of Computer Science, University of Texas at El Paso, 500 W. University, 79968, El Paso, TX, USA
131 rdf:type schema:Organization
132 grid-institutes:grid.412042.1 schema:alternateName Department of Mathematical Sciences, National Chengchi University, 116, Taipei, Taiwan
133 schema:name Department of Mathematical Sciences, National Chengchi University, 116, Taipei, Taiwan
134 rdf:type schema:Organization
135 grid-institutes:grid.422751.7 schema:alternateName Applied Biomathematics, Inc., 100 North Country Rd., 11733, Setauket, NY, USA
136 schema:name Applied Biomathematics, Inc., 100 North Country Rd., 11733, Setauket, NY, USA
137 rdf:type schema:Organization
138 grid-institutes:grid.7132.7 schema:alternateName Department of Economics, ChiangMai University, 50100, Chiangmai, Thailand
139 schema:name Department of Economics, ChiangMai University, 50100, Chiangmai, Thailand
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...