Skyline Snippets View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Markus Endres , Werner Kießling

ABSTRACT

There is a strong demand for a deep personalization of search systems for many Internet applications. In this respect the proper handling of user preferences plays an important role. Here we focus on the efficient evaluation of the Pareto preference operator for structured data in very large databases. The result set of such a Pareto query, also known as the “skyline”, tends to become very large for higher dimensionalities. Often it is too time-consuming or just not necessary to compute the entire skyline, instead only some fraction of it, called a “snippet”, is sufficient. In this paper we contribute a novel algorithm for a fast computation of such skyline snippets. Our solutions do not rely on the availability of specialized pre-computed indexes, hence are generally applicable. We demonstrate the performance of our approach by several benchmarks studies. The presented results suggest that even for complex Pareto queries, yielding very large skylines, snippets can be computed sufficiently fast, and therefore can be integrated into online Web services. More... »

PAGES

246-257

References to SciGraph publications

  • 2007. Telescope: Zooming to Interesting Skylines in ADVANCES IN DATABASES: CONCEPTS, SYSTEMS AND APPLICATIONS
  • 2007. Evaluating Top-k Skyline Queries over Relational Databases in DATABASE AND EXPERT SYSTEMS APPLICATIONS
  • 2006. On High Dimensional Skylines in ADVANCES IN DATABASE TECHNOLOGY - EDBT 2006
  • Book

    TITLE

    Flexible Query Answering Systems

    ISBN

    978-3-642-24763-7
    978-3-642-24764-4

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-24764-4_22

    DOI

    http://dx.doi.org/10.1007/978-3-642-24764-4_22

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1048201321


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Augsburg", 
              "id": "https://www.grid.ac/institutes/grid.7307.3", 
              "name": [
                "Institute for Computer Science, University of Augsburg, 86135\u00a0Augsburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Endres", 
            "givenName": "Markus", 
            "id": "sg:person.014572474406.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014572474406.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Augsburg", 
              "id": "https://www.grid.ac/institutes/grid.7307.3", 
              "name": [
                "Institute for Computer Science, University of Augsburg, 86135\u00a0Augsburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kie\u00dfling", 
            "givenName": "Werner", 
            "id": "sg:person.07355710125.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07355710125.73"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-540-71703-4_46", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001193009", 
              "https://doi.org/10.1007/978-3-540-71703-4_46"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1189769.1189774", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002058506"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.datak.2005.04.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006706605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.datak.2005.04.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006706605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-155860869-6/50098-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019029851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74469-6_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028044119", 
              "https://doi.org/10.1007/978-3-540-74469-6_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74469-6_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028044119", 
              "https://doi.org/10.1007/978-3-540-74469-6_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11687238_30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030555678", 
              "https://doi.org/10.1007/11687238_30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11687238_30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030555678", 
              "https://doi.org/10.1007/11687238_30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/958942.958946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036818605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1061318.1061320", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049389340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-155860869-6/50035-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050593690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icde.2006.149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094585999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icde.2001.914855", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095608547"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011", 
        "datePublishedReg": "2011-01-01", 
        "description": "There is a strong demand for a deep personalization of search systems for many Internet applications. In this respect the proper handling of user preferences plays an important role. Here we focus on the efficient evaluation of the Pareto preference operator for structured data in very large databases. The result set of such a Pareto query, also known as the \u201cskyline\u201d, tends to become very large for higher dimensionalities. Often it is too time-consuming or just not necessary to compute the entire skyline, instead only some fraction of it, called a \u201csnippet\u201d, is sufficient. In this paper we contribute a novel algorithm for a fast computation of such skyline snippets. Our solutions do not rely on the availability of specialized pre-computed indexes, hence are generally applicable. We demonstrate the performance of our approach by several benchmarks studies. The presented results suggest that even for complex Pareto queries, yielding very large skylines, snippets can be computed sufficiently fast, and therefore can be integrated into online Web services.", 
        "editor": [
          {
            "familyName": "Christiansen", 
            "givenName": "Henning", 
            "type": "Person"
          }, 
          {
            "familyName": "De Tr\u00e9", 
            "givenName": "Guy", 
            "type": "Person"
          }, 
          {
            "familyName": "Yazici", 
            "givenName": "Adnan", 
            "type": "Person"
          }, 
          {
            "familyName": "Zadrozny", 
            "givenName": "Slawomir", 
            "type": "Person"
          }, 
          {
            "familyName": "Andreasen", 
            "givenName": "Troels", 
            "type": "Person"
          }, 
          {
            "familyName": "Larsen", 
            "givenName": "Henrik Legind", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-24764-4_22", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-24763-7", 
            "978-3-642-24764-4"
          ], 
          "name": "Flexible Query Answering Systems", 
          "type": "Book"
        }, 
        "name": "Skyline Snippets", 
        "pagination": "246-257", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-24764-4_22"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e59fee7fb99e6ec12600d0b7cf8f37d4da89fb070ebca185571fe6c3dbec5ef4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1048201321"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-24764-4_22", 
          "https://app.dimensions.ai/details/publication/pub.1048201321"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T16:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000273.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-642-24764-4_22"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24764-4_22'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24764-4_22'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24764-4_22'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24764-4_22'


     

    This table displays all metadata directly associated to this object as RDF triples.

    133 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-24764-4_22 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author N7777e1c81b6744c1bb8c18bd406224f1
    4 schema:citation sg:pub.10.1007/11687238_30
    5 sg:pub.10.1007/978-3-540-71703-4_46
    6 sg:pub.10.1007/978-3-540-74469-6_26
    7 https://doi.org/10.1016/b978-155860869-6/50035-4
    8 https://doi.org/10.1016/b978-155860869-6/50098-6
    9 https://doi.org/10.1016/j.datak.2005.04.003
    10 https://doi.org/10.1109/icde.2001.914855
    11 https://doi.org/10.1109/icde.2006.149
    12 https://doi.org/10.1145/1061318.1061320
    13 https://doi.org/10.1145/1189769.1189774
    14 https://doi.org/10.1145/958942.958946
    15 schema:datePublished 2011
    16 schema:datePublishedReg 2011-01-01
    17 schema:description There is a strong demand for a deep personalization of search systems for many Internet applications. In this respect the proper handling of user preferences plays an important role. Here we focus on the efficient evaluation of the Pareto preference operator for structured data in very large databases. The result set of such a Pareto query, also known as the “skyline”, tends to become very large for higher dimensionalities. Often it is too time-consuming or just not necessary to compute the entire skyline, instead only some fraction of it, called a “snippet”, is sufficient. In this paper we contribute a novel algorithm for a fast computation of such skyline snippets. Our solutions do not rely on the availability of specialized pre-computed indexes, hence are generally applicable. We demonstrate the performance of our approach by several benchmarks studies. The presented results suggest that even for complex Pareto queries, yielding very large skylines, snippets can be computed sufficiently fast, and therefore can be integrated into online Web services.
    18 schema:editor N2f87b0ae3514447fb3e50ede3f22fc8c
    19 schema:genre chapter
    20 schema:inLanguage en
    21 schema:isAccessibleForFree false
    22 schema:isPartOf Nc8ae3ba2d81542308ea16178cebc4795
    23 schema:name Skyline Snippets
    24 schema:pagination 246-257
    25 schema:productId N1b8851909ba843d591651753fe6cf53c
    26 N796a840fac7e4e578041ce72a303d46a
    27 N88de3830fa2b40548cd642abd1ae73e3
    28 schema:publisher N21cad33ecda14594a4b7fdc66f1ba12c
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048201321
    30 https://doi.org/10.1007/978-3-642-24764-4_22
    31 schema:sdDatePublished 2019-04-15T16:19
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher N2f9bdb0762ee4fb6a23ecaea1c0cbce3
    34 schema:url http://link.springer.com/10.1007/978-3-642-24764-4_22
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset chapters
    37 rdf:type schema:Chapter
    38 N09fd9851f43441828c9a902f89a1787d schema:familyName Andreasen
    39 schema:givenName Troels
    40 rdf:type schema:Person
    41 N1b8851909ba843d591651753fe6cf53c schema:name doi
    42 schema:value 10.1007/978-3-642-24764-4_22
    43 rdf:type schema:PropertyValue
    44 N1ba3693a913f48da9adc4f69ed4d9ee6 rdf:first Nbd2a3a0b965c4c878fbc3706655405b2
    45 rdf:rest rdf:nil
    46 N1fb117e7c6cc4a3f9d7bdf9ebc1c1304 rdf:first Nca8a103955c54dc9a3376dfac4e49529
    47 rdf:rest N24f1af167d50406dbd494878fd9844c1
    48 N21cad33ecda14594a4b7fdc66f1ba12c schema:location Berlin, Heidelberg
    49 schema:name Springer Berlin Heidelberg
    50 rdf:type schema:Organisation
    51 N24f1af167d50406dbd494878fd9844c1 rdf:first N58add791bef14e6fa99d90cfee92c677
    52 rdf:rest N778024fbb8624a52a938cc3272574491
    53 N2f87b0ae3514447fb3e50ede3f22fc8c rdf:first Nfc4a81879c594cee823b38822bd8e8a6
    54 rdf:rest N708e39a126be49b8a13bb787594f6e8c
    55 N2f9bdb0762ee4fb6a23ecaea1c0cbce3 schema:name Springer Nature - SN SciGraph project
    56 rdf:type schema:Organization
    57 N58add791bef14e6fa99d90cfee92c677 schema:familyName Zadrozny
    58 schema:givenName Slawomir
    59 rdf:type schema:Person
    60 N708e39a126be49b8a13bb787594f6e8c rdf:first N9c00643e628c45368f4d6250ad17a34f
    61 rdf:rest N1fb117e7c6cc4a3f9d7bdf9ebc1c1304
    62 N7777e1c81b6744c1bb8c18bd406224f1 rdf:first sg:person.014572474406.11
    63 rdf:rest Na12d8e3428d246fb9deea1793ca69212
    64 N778024fbb8624a52a938cc3272574491 rdf:first N09fd9851f43441828c9a902f89a1787d
    65 rdf:rest N1ba3693a913f48da9adc4f69ed4d9ee6
    66 N796a840fac7e4e578041ce72a303d46a schema:name dimensions_id
    67 schema:value pub.1048201321
    68 rdf:type schema:PropertyValue
    69 N88de3830fa2b40548cd642abd1ae73e3 schema:name readcube_id
    70 schema:value e59fee7fb99e6ec12600d0b7cf8f37d4da89fb070ebca185571fe6c3dbec5ef4
    71 rdf:type schema:PropertyValue
    72 N9c00643e628c45368f4d6250ad17a34f schema:familyName De Tré
    73 schema:givenName Guy
    74 rdf:type schema:Person
    75 Na12d8e3428d246fb9deea1793ca69212 rdf:first sg:person.07355710125.73
    76 rdf:rest rdf:nil
    77 Nbd2a3a0b965c4c878fbc3706655405b2 schema:familyName Larsen
    78 schema:givenName Henrik Legind
    79 rdf:type schema:Person
    80 Nc8ae3ba2d81542308ea16178cebc4795 schema:isbn 978-3-642-24763-7
    81 978-3-642-24764-4
    82 schema:name Flexible Query Answering Systems
    83 rdf:type schema:Book
    84 Nca8a103955c54dc9a3376dfac4e49529 schema:familyName Yazici
    85 schema:givenName Adnan
    86 rdf:type schema:Person
    87 Nfc4a81879c594cee823b38822bd8e8a6 schema:familyName Christiansen
    88 schema:givenName Henning
    89 rdf:type schema:Person
    90 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Information and Computing Sciences
    92 rdf:type schema:DefinedTerm
    93 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Information Systems
    95 rdf:type schema:DefinedTerm
    96 sg:person.014572474406.11 schema:affiliation https://www.grid.ac/institutes/grid.7307.3
    97 schema:familyName Endres
    98 schema:givenName Markus
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014572474406.11
    100 rdf:type schema:Person
    101 sg:person.07355710125.73 schema:affiliation https://www.grid.ac/institutes/grid.7307.3
    102 schema:familyName Kießling
    103 schema:givenName Werner
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07355710125.73
    105 rdf:type schema:Person
    106 sg:pub.10.1007/11687238_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030555678
    107 https://doi.org/10.1007/11687238_30
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/978-3-540-71703-4_46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001193009
    110 https://doi.org/10.1007/978-3-540-71703-4_46
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/978-3-540-74469-6_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028044119
    113 https://doi.org/10.1007/978-3-540-74469-6_26
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/b978-155860869-6/50035-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050593690
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/b978-155860869-6/50098-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019029851
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/j.datak.2005.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006706605
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1109/icde.2001.914855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095608547
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1109/icde.2006.149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094585999
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1145/1061318.1061320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049389340
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1145/1189769.1189774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002058506
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1145/958942.958946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036818605
    130 rdf:type schema:CreativeWork
    131 https://www.grid.ac/institutes/grid.7307.3 schema:alternateName University of Augsburg
    132 schema:name Institute for Computer Science, University of Augsburg, 86135 Augsburg, Germany
    133 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...