Skyline Snippets View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Markus Endres , Werner Kießling

ABSTRACT

There is a strong demand for a deep personalization of search systems for many Internet applications. In this respect the proper handling of user preferences plays an important role. Here we focus on the efficient evaluation of the Pareto preference operator for structured data in very large databases. The result set of such a Pareto query, also known as the “skyline”, tends to become very large for higher dimensionalities. Often it is too time-consuming or just not necessary to compute the entire skyline, instead only some fraction of it, called a “snippet”, is sufficient. In this paper we contribute a novel algorithm for a fast computation of such skyline snippets. Our solutions do not rely on the availability of specialized pre-computed indexes, hence are generally applicable. We demonstrate the performance of our approach by several benchmarks studies. The presented results suggest that even for complex Pareto queries, yielding very large skylines, snippets can be computed sufficiently fast, and therefore can be integrated into online Web services. More... »

PAGES

246-257

Book

TITLE

Flexible Query Answering Systems

ISBN

978-3-642-24763-7
978-3-642-24764-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-24764-4_22

DOI

http://dx.doi.org/10.1007/978-3-642-24764-4_22

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048201321


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Computer Science, University of Augsburg, 86135, Augsburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Institute for Computer Science, University of Augsburg, 86135, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Endres", 
        "givenName": "Markus", 
        "id": "sg:person.014572474406.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014572474406.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Computer Science, University of Augsburg, 86135, Augsburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Institute for Computer Science, University of Augsburg, 86135, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kie\u00dfling", 
        "givenName": "Werner", 
        "id": "sg:person.07355710125.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07355710125.73"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "There is a strong demand for a deep personalization of search systems for many Internet applications. In this respect the proper handling of user preferences plays an important role. Here we focus on the efficient evaluation of the Pareto preference operator for structured data in very large databases. The result set of such a Pareto query, also known as the \u201cskyline\u201d, tends to become very large for higher dimensionalities. Often it is too time-consuming or just not necessary to compute the entire skyline, instead only some fraction of it, called a \u201csnippet\u201d, is sufficient. In this paper we contribute a novel algorithm for a fast computation of such skyline snippets. Our solutions do not rely on the availability of specialized pre-computed indexes, hence are generally applicable. We demonstrate the performance of our approach by several benchmarks studies. The presented results suggest that even for complex Pareto queries, yielding very large skylines, snippets can be computed sufficiently fast, and therefore can be integrated into online Web services.", 
    "editor": [
      {
        "familyName": "Christiansen", 
        "givenName": "Henning", 
        "type": "Person"
      }, 
      {
        "familyName": "De Tr\u00e9", 
        "givenName": "Guy", 
        "type": "Person"
      }, 
      {
        "familyName": "Yazici", 
        "givenName": "Adnan", 
        "type": "Person"
      }, 
      {
        "familyName": "Zadrozny", 
        "givenName": "Slawomir", 
        "type": "Person"
      }, 
      {
        "familyName": "Andreasen", 
        "givenName": "Troels", 
        "type": "Person"
      }, 
      {
        "familyName": "Larsen", 
        "givenName": "Henrik Legind", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-24764-4_22", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-24763-7", 
        "978-3-642-24764-4"
      ], 
      "name": "Flexible Query Answering Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "pre-computed indexes", 
      "online web services", 
      "web services", 
      "search system", 
      "preference operators", 
      "structured data", 
      "Internet applications", 
      "user preferences", 
      "novel algorithm", 
      "entire skyline", 
      "large database", 
      "high dimensionality", 
      "fast computation", 
      "deep personalization", 
      "snippets", 
      "skyline", 
      "queries", 
      "efficient evaluation", 
      "strong demand", 
      "personalization", 
      "algorithm", 
      "benchmark study", 
      "proper handling", 
      "computation", 
      "dimensionality", 
      "services", 
      "presented results", 
      "database", 
      "operators", 
      "applications", 
      "performance", 
      "system", 
      "handling", 
      "demand", 
      "solution", 
      "availability", 
      "results", 
      "data", 
      "evaluation", 
      "preferences", 
      "important role", 
      "respect", 
      "index", 
      "role", 
      "study", 
      "fraction", 
      "paper", 
      "approach", 
      "Pareto preference operator", 
      "Pareto query", 
      "such skyline snippets", 
      "skyline snippets", 
      "specialized pre-computed indexes", 
      "complex Pareto queries", 
      "large skylines"
    ], 
    "name": "Skyline Snippets", 
    "pagination": "246-257", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048201321"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-24764-4_22"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-24764-4_22", 
      "https://app.dimensions.ai/details/publication/pub.1048201321"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_292.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-24764-4_22"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24764-4_22'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24764-4_22'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24764-4_22'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24764-4_22'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      23 PREDICATES      82 URIs      74 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-24764-4_22 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 anzsrc-for:0806
4 schema:author Nc29e074059fc47d6a1671d906c8e6c7b
5 schema:datePublished 2011
6 schema:datePublishedReg 2011-01-01
7 schema:description There is a strong demand for a deep personalization of search systems for many Internet applications. In this respect the proper handling of user preferences plays an important role. Here we focus on the efficient evaluation of the Pareto preference operator for structured data in very large databases. The result set of such a Pareto query, also known as the “skyline”, tends to become very large for higher dimensionalities. Often it is too time-consuming or just not necessary to compute the entire skyline, instead only some fraction of it, called a “snippet”, is sufficient. In this paper we contribute a novel algorithm for a fast computation of such skyline snippets. Our solutions do not rely on the availability of specialized pre-computed indexes, hence are generally applicable. We demonstrate the performance of our approach by several benchmarks studies. The presented results suggest that even for complex Pareto queries, yielding very large skylines, snippets can be computed sufficiently fast, and therefore can be integrated into online Web services.
8 schema:editor N31fa32b0aa6e4c3886a58362887be966
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Nf23614d168e94404aca073b843fb8a29
13 schema:keywords Internet applications
14 Pareto preference operator
15 Pareto query
16 algorithm
17 applications
18 approach
19 availability
20 benchmark study
21 complex Pareto queries
22 computation
23 data
24 database
25 deep personalization
26 demand
27 dimensionality
28 efficient evaluation
29 entire skyline
30 evaluation
31 fast computation
32 fraction
33 handling
34 high dimensionality
35 important role
36 index
37 large database
38 large skylines
39 novel algorithm
40 online web services
41 operators
42 paper
43 performance
44 personalization
45 pre-computed indexes
46 preference operators
47 preferences
48 presented results
49 proper handling
50 queries
51 respect
52 results
53 role
54 search system
55 services
56 skyline
57 skyline snippets
58 snippets
59 solution
60 specialized pre-computed indexes
61 strong demand
62 structured data
63 study
64 such skyline snippets
65 system
66 user preferences
67 web services
68 schema:name Skyline Snippets
69 schema:pagination 246-257
70 schema:productId N22ccd834be734b7dbd6379d6b41fd424
71 N2e8b016ae76a4ec2834e28f86b8e2d2c
72 schema:publisher Nc065ff828cbc4052948c2a7c4c8421ff
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048201321
74 https://doi.org/10.1007/978-3-642-24764-4_22
75 schema:sdDatePublished 2021-12-01T20:03
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N7be9e25c928648199c75e1d2b417cf7f
78 schema:url https://doi.org/10.1007/978-3-642-24764-4_22
79 sgo:license sg:explorer/license/
80 sgo:sdDataset chapters
81 rdf:type schema:Chapter
82 N22ccd834be734b7dbd6379d6b41fd424 schema:name dimensions_id
83 schema:value pub.1048201321
84 rdf:type schema:PropertyValue
85 N249aa4576b3a42dcb75c00a252d140cc schema:familyName Yazici
86 schema:givenName Adnan
87 rdf:type schema:Person
88 N289231b6002346f292de029fb9cc4b4d rdf:first sg:person.07355710125.73
89 rdf:rest rdf:nil
90 N2c86a7670bfa449babe755c27147e1f8 schema:familyName Christiansen
91 schema:givenName Henning
92 rdf:type schema:Person
93 N2e8b016ae76a4ec2834e28f86b8e2d2c schema:name doi
94 schema:value 10.1007/978-3-642-24764-4_22
95 rdf:type schema:PropertyValue
96 N31fa32b0aa6e4c3886a58362887be966 rdf:first N2c86a7670bfa449babe755c27147e1f8
97 rdf:rest Nf3f7081e86574647ad393d508e578220
98 N37c7bcae39cc4091ae262608ade39e86 rdf:first Nc8ce5d77a7a7448187f6e83f795bf0a7
99 rdf:rest N492d0b43d6e642ffae7f417a3f6cfd3a
100 N492d0b43d6e642ffae7f417a3f6cfd3a rdf:first Na25fe82d5ce641eeb0972c16b6014562
101 rdf:rest Ne8d7da8c279b420d87e8b578c1cb7da7
102 N7be9e25c928648199c75e1d2b417cf7f schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N9ec6f90507494ce7a7e7fdbc3cd5b3dd schema:familyName De Tré
105 schema:givenName Guy
106 rdf:type schema:Person
107 Na25fe82d5ce641eeb0972c16b6014562 schema:familyName Andreasen
108 schema:givenName Troels
109 rdf:type schema:Person
110 Na76c512458974001b98e1088db511cdd rdf:first N249aa4576b3a42dcb75c00a252d140cc
111 rdf:rest N37c7bcae39cc4091ae262608ade39e86
112 Nc065ff828cbc4052948c2a7c4c8421ff schema:name Springer Nature
113 rdf:type schema:Organisation
114 Nc29e074059fc47d6a1671d906c8e6c7b rdf:first sg:person.014572474406.11
115 rdf:rest N289231b6002346f292de029fb9cc4b4d
116 Nc824d78343bf43219225f69d96d9774a schema:familyName Larsen
117 schema:givenName Henrik Legind
118 rdf:type schema:Person
119 Nc8ce5d77a7a7448187f6e83f795bf0a7 schema:familyName Zadrozny
120 schema:givenName Slawomir
121 rdf:type schema:Person
122 Ne8d7da8c279b420d87e8b578c1cb7da7 rdf:first Nc824d78343bf43219225f69d96d9774a
123 rdf:rest rdf:nil
124 Nf23614d168e94404aca073b843fb8a29 schema:isbn 978-3-642-24763-7
125 978-3-642-24764-4
126 schema:name Flexible Query Answering Systems
127 rdf:type schema:Book
128 Nf3f7081e86574647ad393d508e578220 rdf:first N9ec6f90507494ce7a7e7fdbc3cd5b3dd
129 rdf:rest Na76c512458974001b98e1088db511cdd
130 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
131 schema:name Information and Computing Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
134 schema:name Data Format
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
137 schema:name Information Systems
138 rdf:type schema:DefinedTerm
139 sg:person.014572474406.11 schema:affiliation grid-institutes:grid.7307.3
140 schema:familyName Endres
141 schema:givenName Markus
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014572474406.11
143 rdf:type schema:Person
144 sg:person.07355710125.73 schema:affiliation grid-institutes:grid.7307.3
145 schema:familyName Kießling
146 schema:givenName Werner
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07355710125.73
148 rdf:type schema:Person
149 grid-institutes:grid.7307.3 schema:alternateName Institute for Computer Science, University of Augsburg, 86135, Augsburg, Germany
150 schema:name Institute for Computer Science, University of Augsburg, 86135, Augsburg, Germany
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...