Evaluation of Crossover Operator Performance in Genetic Algorithms with Binary Representation View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2012

AUTHORS

Stjepan Picek , Marin Golub , Domagoj Jakobovic

ABSTRACT

Genetic algorithms (GAs) generate solutions to optimization problems using techniques inspired by natural evolution, like crossover, selection and mutation. In that process, crossover operator plays an important role as an analogue to reproduction in biological sense. During the last decades, a number of different crossover operators have been successfully designed. However, systematic comparison of those operators is difficult to find. This paper presents a comparison of 10 crossover operators that are used in genetic algorithms with binary representation. To achieve this, experiments are conducted on a set of 15 optimization problems. A thorough statistical analysis is performed on the results of those experiments. The results show significant statistical differences between operators and an overall good performance of uniform, single-point and reduced surrogate crossover. Additionally, our experiments have shown that orthogonal crossover operators perform much poorer on the given problem set and constraints. More... »

PAGES

223-230

Book

TITLE

Bio-Inspired Computing and Applications

ISBN

978-3-642-24552-7
978-3-642-24553-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-24553-4_31

DOI

http://dx.doi.org/10.1007/978-3-642-24553-4_31

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022420575


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Faculty of Electrical Engineering and Computing, Unska 3, Zagreb, Croatia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Picek", 
        "givenName": "Stjepan", 
        "id": "sg:person.011753317753.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011753317753.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Faculty of Electrical Engineering and Computing, Unska 3, Zagreb, Croatia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Golub", 
        "givenName": "Marin", 
        "id": "sg:person.014543361731.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543361731.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Faculty of Electrical Engineering and Computing, Unska 3, Zagreb, Croatia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jakobovic", 
        "givenName": "Domagoj", 
        "id": "sg:person.014436470261.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014436470261.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10732-008-9080-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001775984", 
          "https://doi.org/10.1007/s10732-008-9080-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10732-008-9080-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001775984", 
          "https://doi.org/10.1007/s10732-008-9080-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.swevo.2011.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011052808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2007.00905_13.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017185619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03315-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017945027", 
          "https://doi.org/10.1007/978-3-662-03315-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03315-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017945027", 
          "https://doi.org/10.1007/978-3-662-03315-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1389095.1389303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028600463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4235.752920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061172018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4235.910464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061172069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2004.826895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604630"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Genetic algorithms (GAs) generate solutions to optimization problems using techniques inspired by natural evolution, like crossover, selection and mutation. In that process, crossover operator plays an important role as an analogue to reproduction in biological sense. During the last decades, a number of different crossover operators have been successfully designed. However, systematic comparison of those operators is difficult to find. This paper presents a comparison of 10 crossover operators that are used in genetic algorithms with binary representation. To achieve this, experiments are conducted on a set of 15 optimization problems. A thorough statistical analysis is performed on the results of those experiments. The results show significant statistical differences between operators and an overall good performance of uniform, single-point and reduced surrogate crossover. Additionally, our experiments have shown that orthogonal crossover operators perform much poorer on the given problem set and constraints.", 
    "editor": [
      {
        "familyName": "Huang", 
        "givenName": "De-Shuang", 
        "type": "Person"
      }, 
      {
        "familyName": "Gan", 
        "givenName": "Yong", 
        "type": "Person"
      }, 
      {
        "familyName": "Premaratne", 
        "givenName": "Prashan", 
        "type": "Person"
      }, 
      {
        "familyName": "Han", 
        "givenName": "Kyungsook", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-24553-4_31", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-24552-7", 
        "978-3-642-24553-4"
      ], 
      "name": "Bio-Inspired Computing and Applications", 
      "type": "Book"
    }, 
    "name": "Evaluation of Crossover Operator Performance in Genetic Algorithms with Binary Representation", 
    "pagination": "223-230", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-24553-4_31"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6ad0e8f7159e92f161af1c483de6a099342c95ca83a3329fcd20429bb93a2ac8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022420575"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-24553-4_31", 
      "https://app.dimensions.ai/details/publication/pub.1022420575"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000257.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-24553-4_31"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24553-4_31'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24553-4_31'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24553-4_31'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24553-4_31'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-24553-4_31 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nbb19f61b74e14539b60d10e1cef8c6b1
4 schema:citation sg:pub.10.1007/978-3-662-03315-9
5 sg:pub.10.1007/s10732-008-9080-4
6 https://doi.org/10.1016/j.swevo.2011.02.002
7 https://doi.org/10.1109/4235.752920
8 https://doi.org/10.1109/4235.910464
9 https://doi.org/10.1109/tevc.2004.826895
10 https://doi.org/10.1111/j.1541-0420.2007.00905_13.x
11 https://doi.org/10.1145/1389095.1389303
12 schema:datePublished 2012
13 schema:datePublishedReg 2012-01-01
14 schema:description Genetic algorithms (GAs) generate solutions to optimization problems using techniques inspired by natural evolution, like crossover, selection and mutation. In that process, crossover operator plays an important role as an analogue to reproduction in biological sense. During the last decades, a number of different crossover operators have been successfully designed. However, systematic comparison of those operators is difficult to find. This paper presents a comparison of 10 crossover operators that are used in genetic algorithms with binary representation. To achieve this, experiments are conducted on a set of 15 optimization problems. A thorough statistical analysis is performed on the results of those experiments. The results show significant statistical differences between operators and an overall good performance of uniform, single-point and reduced surrogate crossover. Additionally, our experiments have shown that orthogonal crossover operators perform much poorer on the given problem set and constraints.
15 schema:editor N62b1dec444e2428aa0554d48d8272294
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf Ne49d328e25164a66a9d836cc8d6a6640
20 schema:name Evaluation of Crossover Operator Performance in Genetic Algorithms with Binary Representation
21 schema:pagination 223-230
22 schema:productId N201c0a708368478f81b3d87ce5510096
23 N7c8fe3961087442695e0d1a9da7f066e
24 Na22f6c07fc1b4ea0b99e0705d85a2e30
25 schema:publisher N9763149222f748f8aa411a9cf1dce9e4
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022420575
27 https://doi.org/10.1007/978-3-642-24553-4_31
28 schema:sdDatePublished 2019-04-15T21:58
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N6170657fca3a4160907bf46620c700bf
31 schema:url http://link.springer.com/10.1007/978-3-642-24553-4_31
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N06e582ff67d3428eabbe38628aceaea5 rdf:first N79fc9e872bd54833afa2a0922773c7e5
36 rdf:rest rdf:nil
37 N201c0a708368478f81b3d87ce5510096 schema:name doi
38 schema:value 10.1007/978-3-642-24553-4_31
39 rdf:type schema:PropertyValue
40 N22f5e9b6ec01462f88a6986661b3f537 rdf:first Nb06bab41361344848c1cf8d5bdbb539e
41 rdf:rest N9ae5b39368c544a6859d8012220beb24
42 N3125cde667ee43c68b3b3b509dbc157d schema:familyName Huang
43 schema:givenName De-Shuang
44 rdf:type schema:Person
45 N321d5b69585c4f44ba7c210719546cfb schema:familyName Premaratne
46 schema:givenName Prashan
47 rdf:type schema:Person
48 N6170657fca3a4160907bf46620c700bf schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N62b1dec444e2428aa0554d48d8272294 rdf:first N3125cde667ee43c68b3b3b509dbc157d
51 rdf:rest N22f5e9b6ec01462f88a6986661b3f537
52 N79fc9e872bd54833afa2a0922773c7e5 schema:familyName Han
53 schema:givenName Kyungsook
54 rdf:type schema:Person
55 N7c8fe3961087442695e0d1a9da7f066e schema:name dimensions_id
56 schema:value pub.1022420575
57 rdf:type schema:PropertyValue
58 N9763149222f748f8aa411a9cf1dce9e4 schema:location Berlin, Heidelberg
59 schema:name Springer Berlin Heidelberg
60 rdf:type schema:Organisation
61 N9ae5b39368c544a6859d8012220beb24 rdf:first N321d5b69585c4f44ba7c210719546cfb
62 rdf:rest N06e582ff67d3428eabbe38628aceaea5
63 Na22f6c07fc1b4ea0b99e0705d85a2e30 schema:name readcube_id
64 schema:value 6ad0e8f7159e92f161af1c483de6a099342c95ca83a3329fcd20429bb93a2ac8
65 rdf:type schema:PropertyValue
66 Nb06bab41361344848c1cf8d5bdbb539e schema:familyName Gan
67 schema:givenName Yong
68 rdf:type schema:Person
69 Nbb19f61b74e14539b60d10e1cef8c6b1 rdf:first sg:person.011753317753.09
70 rdf:rest Nd653eff05b4949219b5b34e7f3a6f1e2
71 Nc711bd43a1624217a6b3118de6bdc1bf rdf:first sg:person.014436470261.38
72 rdf:rest rdf:nil
73 Nd653eff05b4949219b5b34e7f3a6f1e2 rdf:first sg:person.014543361731.74
74 rdf:rest Nc711bd43a1624217a6b3118de6bdc1bf
75 Ne49d328e25164a66a9d836cc8d6a6640 schema:isbn 978-3-642-24552-7
76 978-3-642-24553-4
77 schema:name Bio-Inspired Computing and Applications
78 rdf:type schema:Book
79 Ne992d7b6b82d4317bfd3f8af3bd817a4 schema:name Faculty of Electrical Engineering and Computing, Unska 3, Zagreb, Croatia
80 rdf:type schema:Organization
81 Nee277623794a42faaf18dbdf6e44779f schema:name Faculty of Electrical Engineering and Computing, Unska 3, Zagreb, Croatia
82 rdf:type schema:Organization
83 Nf5961552c8584123a7ea0a9f7588ef3b schema:name Faculty of Electrical Engineering and Computing, Unska 3, Zagreb, Croatia
84 rdf:type schema:Organization
85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
86 schema:name Mathematical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
89 schema:name Numerical and Computational Mathematics
90 rdf:type schema:DefinedTerm
91 sg:person.011753317753.09 schema:affiliation Nee277623794a42faaf18dbdf6e44779f
92 schema:familyName Picek
93 schema:givenName Stjepan
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011753317753.09
95 rdf:type schema:Person
96 sg:person.014436470261.38 schema:affiliation Ne992d7b6b82d4317bfd3f8af3bd817a4
97 schema:familyName Jakobovic
98 schema:givenName Domagoj
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014436470261.38
100 rdf:type schema:Person
101 sg:person.014543361731.74 schema:affiliation Nf5961552c8584123a7ea0a9f7588ef3b
102 schema:familyName Golub
103 schema:givenName Marin
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543361731.74
105 rdf:type schema:Person
106 sg:pub.10.1007/978-3-662-03315-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017945027
107 https://doi.org/10.1007/978-3-662-03315-9
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s10732-008-9080-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001775984
110 https://doi.org/10.1007/s10732-008-9080-4
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.swevo.2011.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011052808
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/4235.752920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061172018
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/4235.910464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061172069
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/tevc.2004.826895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604630
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1111/j.1541-0420.2007.00905_13.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017185619
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1145/1389095.1389303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028600463
123 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...