Ontology type: schema:Chapter
2011
AUTHORSDime Vitanovski , Alexey Tsymbal , Razvan Ioan Ionasec , Michaela Schmidt , Andreas Greiser , Edgar Mueller , Xiaoguang Lu , Gareth Funka-Lea , Joachim Hornegger , Dorin Comaniciu
ABSTRACTCardiac MR (CMR) imaging is increasingly accepted as the gold standard for the evaluation of cardiac anatomy, function and mass. The multi-plan ability of CMR makes it a well suited modality for evaluation of the complex anatomy of the mitral valve (MV). However, the 2D slice-based acquisition paradigm of CMR limits the 4D capabilities for precise and accurate morphological and pathological analysis due to long through-put times and protracted study. In this paper we propose a new CMR protocol for acquiring MR images for 4D MV analysis. The proposed protocol is optimized regarding the number and spatial configuration of the 2D CMR slices. Furthermore, we present a learning- based framework for patient-specific 4D MV segmentation from 2D CMR slices (sparse data). The key idea with our Regression-based Surface Reconstruction (RSR) algorithm is the use of available MV models from other imaging modalities (CT, US) to train a dynamic regression model which will then be able to infer the absent information pertinent to CMR. Extensive experiments on 200 transesophageal echochardiographic (TEE) US and 20 cardiac CT sequences are performed to train the regression model and to define the CMR acquisition protocol. With the proposed acquisition protocol, a stack of 6 parallel long-axis (LA) planes, we acquired CMR patient images and regressed 4D patient-specific MV model with an accuracy of 1.5±0.2 mm and average speed of 10 sec per volume. More... »
PAGES282-290
Machine Learning in Medical Imaging
ISBN
978-3-642-24318-9
978-3-642-24319-6
http://scigraph.springernature.com/pub.10.1007/978-3-642-24319-6_35
DOIhttp://dx.doi.org/10.1007/978-3-642-24319-6_35
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1053420121
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Siemens Health Care, Erlangen, Germany",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Siemens Corporate Technology, Erlangen, Germany",
"Siemens Health Care, Erlangen, Germany"
],
"type": "Organization"
},
"familyName": "Vitanovski",
"givenName": "Dime",
"id": "sg:person.01242456111.33",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242456111.33"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Siemens Corporate Technology, Erlangen, Germany",
"id": "http://www.grid.ac/institutes/grid.5406.7",
"name": [
"Siemens Corporate Technology, Erlangen, Germany"
],
"type": "Organization"
},
"familyName": "Tsymbal",
"givenName": "Alexey",
"id": "sg:person.015310157176.53",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015310157176.53"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Siemens Corporate Research, Princeton, USA",
"id": "http://www.grid.ac/institutes/grid.419233.e",
"name": [
"Siemens Corporate Research, Princeton, USA"
],
"type": "Organization"
},
"familyName": "Ionasec",
"givenName": "Razvan Ioan",
"id": "sg:person.01010560470.38",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010560470.38"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Siemens Health Care, Erlangen, Germany",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Siemens Health Care, Erlangen, Germany"
],
"type": "Organization"
},
"familyName": "Schmidt",
"givenName": "Michaela",
"id": "sg:person.01366540300.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366540300.16"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Pattern Recognition Lab, Friedrich-Alexander-University, Erlangen, Germany",
"id": "http://www.grid.ac/institutes/grid.5330.5",
"name": [
"Pattern Recognition Lab, Friedrich-Alexander-University, Erlangen, Germany"
],
"type": "Organization"
},
"familyName": "Greiser",
"givenName": "Andreas",
"id": "sg:person.0651123736.07",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651123736.07"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Pattern Recognition Lab, Friedrich-Alexander-University, Erlangen, Germany",
"id": "http://www.grid.ac/institutes/grid.5330.5",
"name": [
"Pattern Recognition Lab, Friedrich-Alexander-University, Erlangen, Germany"
],
"type": "Organization"
},
"familyName": "Mueller",
"givenName": "Edgar",
"id": "sg:person.014732375471.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014732375471.17"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Siemens Corporate Research, Princeton, USA",
"id": "http://www.grid.ac/institutes/grid.419233.e",
"name": [
"Siemens Corporate Research, Princeton, USA"
],
"type": "Organization"
},
"familyName": "Lu",
"givenName": "Xiaoguang",
"id": "sg:person.0656702353.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656702353.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Siemens Corporate Research, Princeton, USA",
"id": "http://www.grid.ac/institutes/grid.419233.e",
"name": [
"Siemens Corporate Research, Princeton, USA"
],
"type": "Organization"
},
"familyName": "Funka-Lea",
"givenName": "Gareth",
"id": "sg:person.0734140604.44",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734140604.44"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Siemens Health Care, Erlangen, Germany",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Siemens Health Care, Erlangen, Germany"
],
"type": "Organization"
},
"familyName": "Hornegger",
"givenName": "Joachim",
"id": "sg:person.01322323610.92",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322323610.92"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Siemens Corporate Research, Princeton, USA",
"id": "http://www.grid.ac/institutes/grid.419233.e",
"name": [
"Siemens Corporate Research, Princeton, USA"
],
"type": "Organization"
},
"familyName": "Comaniciu",
"givenName": "Dorin",
"id": "sg:person.01066111014.77",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
],
"type": "Person"
}
],
"datePublished": "2011",
"datePublishedReg": "2011-01-01",
"description": "Cardiac MR (CMR) imaging is increasingly accepted as the gold standard for the evaluation of cardiac anatomy, function and mass. The multi-plan ability of CMR makes it a well suited modality for evaluation of the complex anatomy of the mitral valve (MV). However, the 2D slice-based acquisition paradigm of CMR limits the 4D capabilities for precise and accurate morphological and pathological analysis due to long through-put times and protracted study. In this paper we propose a new CMR protocol for acquiring MR images for 4D MV analysis. The proposed protocol is optimized regarding the number and spatial configuration of the 2D CMR slices. Furthermore, we present a learning- based framework for patient-specific 4D MV segmentation from 2D CMR slices (sparse data). The key idea with our Regression-based Surface Reconstruction (RSR) algorithm is the use of available MV models from other imaging modalities (CT, US) to train a dynamic regression model which will then be able to infer the absent information pertinent to CMR. Extensive experiments on 200 transesophageal echochardiographic (TEE) US and 20 cardiac CT sequences are performed to train the regression model and to define the CMR acquisition protocol. With the proposed acquisition protocol, a stack of 6 parallel long-axis (LA) planes, we acquired CMR patient images and regressed 4D patient-specific MV model with an accuracy of 1.5\u00b10.2 mm and average speed of 10 sec per volume.",
"editor": [
{
"familyName": "Suzuki",
"givenName": "Kenji",
"type": "Person"
},
{
"familyName": "Wang",
"givenName": "Fei",
"type": "Person"
},
{
"familyName": "Shen",
"givenName": "Dinggang",
"type": "Person"
},
{
"familyName": "Yan",
"givenName": "Pingkun",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-24319-6_35",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-24318-9",
"978-3-642-24319-6"
],
"name": "Machine Learning in Medical Imaging",
"type": "Book"
},
"keywords": [
"learning-based framework",
"surface reconstruction algorithm",
"Extensive experiments",
"suited modality",
"key idea",
"acquisition protocol",
"reconstruction algorithm",
"patient images",
"MRI slices",
"acquisition paradigm",
"MV model",
"CT sequences",
"surface reconstruction",
"images",
"MR images",
"protocol",
"segmentation",
"algorithm",
"dynamic regression models",
"average speed",
"framework",
"paradigm",
"model",
"capability",
"accuracy",
"information",
"cardiac anatomy",
"spatial configuration",
"absent information",
"cardiac MR imaging",
"stack",
"idea",
"slices",
"evaluation",
"speed",
"reconstruction",
"standards",
"experiments",
"MV analysis",
"modalities",
"complex anatomy",
"configuration",
"number",
"regression models",
"time",
"use",
"sequence",
"analysis",
"ability",
"function",
"anatomy",
"CMR",
"uses",
"gold standard",
"plane",
"volume",
"imaging",
"axis plane",
"sec",
"study",
"limit",
"MR imaging",
"pathological analysis",
"valve",
"mitral valve",
"mass",
"CMR protocol",
"paper"
],
"name": "Accurate Regression-Based 4D Mitral Valve Surface Reconstruction from 2D+t MRI Slices",
"pagination": "282-290",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1053420121"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-24319-6_35"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-24319-6_35",
"https://app.dimensions.ai/details/publication/pub.1053420121"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:33",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_362.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-24319-6_35"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24319-6_35'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24319-6_35'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24319-6_35'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24319-6_35'
This table displays all metadata directly associated to this object as RDF triples.
216 TRIPLES
23 PREDICATES
94 URIs
87 LITERALS
7 BLANK NODES