Improving 3D Reconstruction for Digital Art Preservation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Jurandir Santos , Olga Bellon , Luciano Silva , Alexandre Vrubel

ABSTRACT

Achieving a high fidelity triangle mesh from 3D digital reconstructions is still a challenge, mainly due to the harmful effects of outliers in the range data. In this work, we discuss these artifacts and suggest improvements for two widely used volumetric integration techniques: VRIP and Consensus Surfaces (CS). A novel contribution is a hybrid approach, named IMAGO Volumetric Integration Algorithm (IVIA), which combines strengths from both VRIP and CS while adds new ideas that greatly improve the detection and elimination of artifacts. We show that IVIA leads to superior results when applied in different scenarios. In addition, IVIA cooperates with the hole filling process, improving the overall quality of the generated 3D models. We also compare IVIA to Poisson Surface Reconstruction, a state-of-the-art method with good reconstruction results and high performance both in terms of memory usage and processing time. More... »

PAGES

374-383

References to SciGraph publications

Book

TITLE

Image Analysis and Processing – ICIAP 2011

ISBN

978-3-642-24084-3
978-3-642-24085-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-24085-0_39

DOI

http://dx.doi.org/10.1007/978-3-642-24085-0_39

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002099281


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Federal University of Paran\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.20736.30", 
          "name": [
            "Department of Informatics, Universidade Federal do Parana, IMAGO Research Group, Curitiba, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Santos", 
        "givenName": "Jurandir", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Paran\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.20736.30", 
          "name": [
            "Department of Informatics, Universidade Federal do Parana, IMAGO Research Group, Curitiba, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bellon", 
        "givenName": "Olga", 
        "id": "sg:person.016130316757.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016130316757.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Paran\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.20736.30", 
          "name": [
            "Department of Informatics, Universidade Federal do Parana, IMAGO Research Group, Curitiba, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Silva", 
        "givenName": "Luciano", 
        "id": "sg:person.011255035201.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011255035201.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Paran\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.20736.30", 
          "name": [
            "Department of Informatics, Universidade Federal do Parana, IMAGO Research Group, Curitiba, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vrubel", 
        "givenName": "Alexandre", 
        "id": "sg:person.010376114345.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010376114345.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bfb0054315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001382632", 
          "https://doi.org/10.1007/bfb0054315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00371-003-0237-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002335806", 
          "https://doi.org/10.1007/s00371-003-0237-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/237170.237269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005380297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-10331-5_63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010482186", 
          "https://doi.org/10.1007/978-3-642-10331-5_63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-10331-5_63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010482186", 
          "https://doi.org/10.1007/978-3-642-10331-5_63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-007-0039-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011529052", 
          "https://doi.org/10.1007/s11263-007-0039-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/344779.344849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019944005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-0797-0_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022507806", 
          "https://doi.org/10.1007/978-1-4615-0797-0_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-0797-0_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022507806", 
          "https://doi.org/10.1007/978-1-4615-0797-0_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8659.2006.00958.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026303373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/192161.192241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031736686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/882262.882293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033117886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-8659.00574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049743732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0015528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051119162", 
          "https://doi.org/10.1007/bfb0015528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2945.817351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061146324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1073204.1073227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063150429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tdpvt.2002.1024098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093371851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2001.990950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094022703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2009.5206586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094444191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.1998.710826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094870909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tdpvt.2002.1024099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094913390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/im.2003.1240276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094968349"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "Achieving a high fidelity triangle mesh from 3D digital reconstructions is still a challenge, mainly due to the harmful effects of outliers in the range data. In this work, we discuss these artifacts and suggest improvements for two widely used volumetric integration techniques: VRIP and Consensus Surfaces (CS). A novel contribution is a hybrid approach, named IMAGO Volumetric Integration Algorithm (IVIA), which combines strengths from both VRIP and CS while adds new ideas that greatly improve the detection and elimination of artifacts. We show that IVIA leads to superior results when applied in different scenarios. In addition, IVIA cooperates with the hole filling process, improving the overall quality of the generated 3D models. We also compare IVIA to Poisson Surface Reconstruction, a state-of-the-art method with good reconstruction results and high performance both in terms of memory usage and processing time.", 
    "editor": [
      {
        "familyName": "Maino", 
        "givenName": "Giuseppe", 
        "type": "Person"
      }, 
      {
        "familyName": "Foresti", 
        "givenName": "Gian Luca", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-24085-0_39", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-24084-3", 
        "978-3-642-24085-0"
      ], 
      "name": "Image Analysis and Processing \u2013 ICIAP 2011", 
      "type": "Book"
    }, 
    "name": "Improving 3D Reconstruction for Digital Art Preservation", 
    "pagination": "374-383", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002099281"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-24085-0_39"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "09ff5a44b22b15441f4e96eb043c4d3887fbb337058343388aac3d3a210d48e6"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-24085-0_39", 
      "https://app.dimensions.ai/details/publication/pub.1002099281"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130820_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-24085-0_39"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24085-0_39'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24085-0_39'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24085-0_39'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24085-0_39'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      23 PREDICATES      47 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-24085-0_39 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N94211b43d8704e7cb5254a4ffb4c885f
4 schema:citation sg:pub.10.1007/978-1-4615-0797-0_8
5 sg:pub.10.1007/978-3-642-10331-5_63
6 sg:pub.10.1007/bfb0015528
7 sg:pub.10.1007/bfb0054315
8 sg:pub.10.1007/s00371-003-0237-8
9 sg:pub.10.1007/s11263-007-0039-y
10 https://doi.org/10.1109/2945.817351
11 https://doi.org/10.1109/cvpr.2001.990950
12 https://doi.org/10.1109/cvpr.2009.5206586
13 https://doi.org/10.1109/iccv.1998.710826
14 https://doi.org/10.1109/im.2003.1240276
15 https://doi.org/10.1109/tdpvt.2002.1024098
16 https://doi.org/10.1109/tdpvt.2002.1024099
17 https://doi.org/10.1111/1467-8659.00574
18 https://doi.org/10.1111/j.1467-8659.2006.00958.x
19 https://doi.org/10.1145/1073204.1073227
20 https://doi.org/10.1145/192161.192241
21 https://doi.org/10.1145/237170.237269
22 https://doi.org/10.1145/344779.344849
23 https://doi.org/10.1145/882262.882293
24 schema:datePublished 2011
25 schema:datePublishedReg 2011-01-01
26 schema:description Achieving a high fidelity triangle mesh from 3D digital reconstructions is still a challenge, mainly due to the harmful effects of outliers in the range data. In this work, we discuss these artifacts and suggest improvements for two widely used volumetric integration techniques: VRIP and Consensus Surfaces (CS). A novel contribution is a hybrid approach, named IMAGO Volumetric Integration Algorithm (IVIA), which combines strengths from both VRIP and CS while adds new ideas that greatly improve the detection and elimination of artifacts. We show that IVIA leads to superior results when applied in different scenarios. In addition, IVIA cooperates with the hole filling process, improving the overall quality of the generated 3D models. We also compare IVIA to Poisson Surface Reconstruction, a state-of-the-art method with good reconstruction results and high performance both in terms of memory usage and processing time.
27 schema:editor Nd326748823794d0da7c527df58818ef2
28 schema:genre chapter
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf Nbeb404565c0940acabd85b0bb1f7d5ef
32 schema:name Improving 3D Reconstruction for Digital Art Preservation
33 schema:pagination 374-383
34 schema:productId N418410cd69f54f53b2c529150ef5d586
35 N4ae155fbf599444491490cf4f1857ae2
36 N9ffcbcf3ab194193a30a37f918c8c3b1
37 schema:publisher N9fcadc21448f4ed0aa68b8070ac3404f
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002099281
39 https://doi.org/10.1007/978-3-642-24085-0_39
40 schema:sdDatePublished 2019-04-16T09:18
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N2a279d463cd44b2895d7e9575c6dee4a
43 schema:url https://link.springer.com/10.1007%2F978-3-642-24085-0_39
44 sgo:license sg:explorer/license/
45 sgo:sdDataset chapters
46 rdf:type schema:Chapter
47 N2a279d463cd44b2895d7e9575c6dee4a schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N30a2e167e77f4aa3943c5be765e4aa00 rdf:first sg:person.010376114345.43
50 rdf:rest rdf:nil
51 N418410cd69f54f53b2c529150ef5d586 schema:name dimensions_id
52 schema:value pub.1002099281
53 rdf:type schema:PropertyValue
54 N4ae155fbf599444491490cf4f1857ae2 schema:name doi
55 schema:value 10.1007/978-3-642-24085-0_39
56 rdf:type schema:PropertyValue
57 N54ea5b4332b248d3b52497315404f12b rdf:first Nee9b7eb188784398bb84d328dfc2a3e5
58 rdf:rest rdf:nil
59 N67c11bdd51754158847258ac6517061b rdf:first sg:person.016130316757.62
60 rdf:rest N75598d94e8654f4d96430ff0c9dd7c12
61 N68471f1a6aa74272ad9620208d3a5318 schema:familyName Maino
62 schema:givenName Giuseppe
63 rdf:type schema:Person
64 N75598d94e8654f4d96430ff0c9dd7c12 rdf:first sg:person.011255035201.31
65 rdf:rest N30a2e167e77f4aa3943c5be765e4aa00
66 N8df06c68f4734e3ea2542a627b5969d8 schema:affiliation https://www.grid.ac/institutes/grid.20736.30
67 schema:familyName Santos
68 schema:givenName Jurandir
69 rdf:type schema:Person
70 N94211b43d8704e7cb5254a4ffb4c885f rdf:first N8df06c68f4734e3ea2542a627b5969d8
71 rdf:rest N67c11bdd51754158847258ac6517061b
72 N9fcadc21448f4ed0aa68b8070ac3404f schema:location Berlin, Heidelberg
73 schema:name Springer Berlin Heidelberg
74 rdf:type schema:Organisation
75 N9ffcbcf3ab194193a30a37f918c8c3b1 schema:name readcube_id
76 schema:value 09ff5a44b22b15441f4e96eb043c4d3887fbb337058343388aac3d3a210d48e6
77 rdf:type schema:PropertyValue
78 Nbeb404565c0940acabd85b0bb1f7d5ef schema:isbn 978-3-642-24084-3
79 978-3-642-24085-0
80 schema:name Image Analysis and Processing – ICIAP 2011
81 rdf:type schema:Book
82 Nd326748823794d0da7c527df58818ef2 rdf:first N68471f1a6aa74272ad9620208d3a5318
83 rdf:rest N54ea5b4332b248d3b52497315404f12b
84 Nee9b7eb188784398bb84d328dfc2a3e5 schema:familyName Foresti
85 schema:givenName Gian Luca
86 rdf:type schema:Person
87 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
88 schema:name Information and Computing Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
91 schema:name Artificial Intelligence and Image Processing
92 rdf:type schema:DefinedTerm
93 sg:person.010376114345.43 schema:affiliation https://www.grid.ac/institutes/grid.20736.30
94 schema:familyName Vrubel
95 schema:givenName Alexandre
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010376114345.43
97 rdf:type schema:Person
98 sg:person.011255035201.31 schema:affiliation https://www.grid.ac/institutes/grid.20736.30
99 schema:familyName Silva
100 schema:givenName Luciano
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011255035201.31
102 rdf:type schema:Person
103 sg:person.016130316757.62 schema:affiliation https://www.grid.ac/institutes/grid.20736.30
104 schema:familyName Bellon
105 schema:givenName Olga
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016130316757.62
107 rdf:type schema:Person
108 sg:pub.10.1007/978-1-4615-0797-0_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022507806
109 https://doi.org/10.1007/978-1-4615-0797-0_8
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/978-3-642-10331-5_63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010482186
112 https://doi.org/10.1007/978-3-642-10331-5_63
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bfb0015528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051119162
115 https://doi.org/10.1007/bfb0015528
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bfb0054315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001382632
118 https://doi.org/10.1007/bfb0054315
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00371-003-0237-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002335806
121 https://doi.org/10.1007/s00371-003-0237-8
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s11263-007-0039-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1011529052
124 https://doi.org/10.1007/s11263-007-0039-y
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/2945.817351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061146324
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/cvpr.2001.990950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094022703
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/cvpr.2009.5206586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094444191
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/iccv.1998.710826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094870909
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/im.2003.1240276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094968349
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/tdpvt.2002.1024098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093371851
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/tdpvt.2002.1024099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094913390
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1111/1467-8659.00574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049743732
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1111/j.1467-8659.2006.00958.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026303373
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1145/1073204.1073227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063150429
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1145/192161.192241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031736686
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1145/237170.237269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005380297
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1145/344779.344849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019944005
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1145/882262.882293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033117886
153 rdf:type schema:CreativeWork
154 https://www.grid.ac/institutes/grid.20736.30 schema:alternateName Federal University of Paraná
155 schema:name Department of Informatics, Universidade Federal do Parana, IMAGO Research Group, Curitiba, Brazil
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...