Ontology type: schema:Chapter
2011
AUTHORSJurandir Santos , Olga Bellon , Luciano Silva , Alexandre Vrubel
ABSTRACTAchieving a high fidelity triangle mesh from 3D digital reconstructions is still a challenge, mainly due to the harmful effects of outliers in the range data. In this work, we discuss these artifacts and suggest improvements for two widely used volumetric integration techniques: VRIP and Consensus Surfaces (CS). A novel contribution is a hybrid approach, named IMAGO Volumetric Integration Algorithm (IVIA), which combines strengths from both VRIP and CS while adds new ideas that greatly improve the detection and elimination of artifacts. We show that IVIA leads to superior results when applied in different scenarios. In addition, IVIA cooperates with the hole filling process, improving the overall quality of the generated 3D models. We also compare IVIA to Poisson Surface Reconstruction, a state-of-the-art method with good reconstruction results and high performance both in terms of memory usage and processing time. More... »
PAGES374-383
Image Analysis and Processing – ICIAP 2011
ISBN
978-3-642-24084-3
978-3-642-24085-0
http://scigraph.springernature.com/pub.10.1007/978-3-642-24085-0_39
DOIhttp://dx.doi.org/10.1007/978-3-642-24085-0_39
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1002099281
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Federal University of Paran\u00e1",
"id": "https://www.grid.ac/institutes/grid.20736.30",
"name": [
"Department of Informatics, Universidade Federal do Parana, IMAGO Research Group, Curitiba, Brazil"
],
"type": "Organization"
},
"familyName": "Santos",
"givenName": "Jurandir",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Federal University of Paran\u00e1",
"id": "https://www.grid.ac/institutes/grid.20736.30",
"name": [
"Department of Informatics, Universidade Federal do Parana, IMAGO Research Group, Curitiba, Brazil"
],
"type": "Organization"
},
"familyName": "Bellon",
"givenName": "Olga",
"id": "sg:person.016130316757.62",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016130316757.62"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Federal University of Paran\u00e1",
"id": "https://www.grid.ac/institutes/grid.20736.30",
"name": [
"Department of Informatics, Universidade Federal do Parana, IMAGO Research Group, Curitiba, Brazil"
],
"type": "Organization"
},
"familyName": "Silva",
"givenName": "Luciano",
"id": "sg:person.011255035201.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011255035201.31"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Federal University of Paran\u00e1",
"id": "https://www.grid.ac/institutes/grid.20736.30",
"name": [
"Department of Informatics, Universidade Federal do Parana, IMAGO Research Group, Curitiba, Brazil"
],
"type": "Organization"
},
"familyName": "Vrubel",
"givenName": "Alexandre",
"id": "sg:person.010376114345.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010376114345.43"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bfb0054315",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001382632",
"https://doi.org/10.1007/bfb0054315"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00371-003-0237-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002335806",
"https://doi.org/10.1007/s00371-003-0237-8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/237170.237269",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005380297"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-10331-5_63",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010482186",
"https://doi.org/10.1007/978-3-642-10331-5_63"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-10331-5_63",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010482186",
"https://doi.org/10.1007/978-3-642-10331-5_63"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11263-007-0039-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011529052",
"https://doi.org/10.1007/s11263-007-0039-y"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/344779.344849",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019944005"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4615-0797-0_8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022507806",
"https://doi.org/10.1007/978-1-4615-0797-0_8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4615-0797-0_8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022507806",
"https://doi.org/10.1007/978-1-4615-0797-0_8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1467-8659.2006.00958.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026303373"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/192161.192241",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031736686"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/882262.882293",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033117886"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/1467-8659.00574",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049743732"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0015528",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051119162",
"https://doi.org/10.1007/bfb0015528"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/2945.817351",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061146324"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/1073204.1073227",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1063150429"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tdpvt.2002.1024098",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093371851"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cvpr.2001.990950",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094022703"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cvpr.2009.5206586",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094444191"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/iccv.1998.710826",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094870909"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tdpvt.2002.1024099",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094913390"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/im.2003.1240276",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094968349"
],
"type": "CreativeWork"
}
],
"datePublished": "2011",
"datePublishedReg": "2011-01-01",
"description": "Achieving a high fidelity triangle mesh from 3D digital reconstructions is still a challenge, mainly due to the harmful effects of outliers in the range data. In this work, we discuss these artifacts and suggest improvements for two widely used volumetric integration techniques: VRIP and Consensus Surfaces (CS). A novel contribution is a hybrid approach, named IMAGO Volumetric Integration Algorithm (IVIA), which combines strengths from both VRIP and CS while adds new ideas that greatly improve the detection and elimination of artifacts. We show that IVIA leads to superior results when applied in different scenarios. In addition, IVIA cooperates with the hole filling process, improving the overall quality of the generated 3D models. We also compare IVIA to Poisson Surface Reconstruction, a state-of-the-art method with good reconstruction results and high performance both in terms of memory usage and processing time.",
"editor": [
{
"familyName": "Maino",
"givenName": "Giuseppe",
"type": "Person"
},
{
"familyName": "Foresti",
"givenName": "Gian Luca",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-24085-0_39",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-24084-3",
"978-3-642-24085-0"
],
"name": "Image Analysis and Processing \u2013 ICIAP 2011",
"type": "Book"
},
"name": "Improving 3D Reconstruction for Digital Art Preservation",
"pagination": "374-383",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1002099281"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-24085-0_39"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"09ff5a44b22b15441f4e96eb043c4d3887fbb337058343388aac3d3a210d48e6"
]
}
],
"publisher": {
"location": "Berlin, Heidelberg",
"name": "Springer Berlin Heidelberg",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-24085-0_39",
"https://app.dimensions.ai/details/publication/pub.1002099281"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T09:18",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130820_00000000.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-3-642-24085-0_39"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24085-0_39'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24085-0_39'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24085-0_39'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-24085-0_39'
This table displays all metadata directly associated to this object as RDF triples.
156 TRIPLES
23 PREDICATES
47 URIs
20 LITERALS
8 BLANK NODES