Multi-stage Learning for Robust Lung Segmentation in Challenging CT Volumes View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2011

AUTHORS

Michal Sofka , Jens Wetzl , Neil Birkbeck , Jingdan Zhang , Timo Kohlberger , Jens Kaftan , Jérôme Declerck , S. Kevin Zhou

ABSTRACT

Simple algorithms for segmenting healthy lung parenchyma in CT are unable to deal with high density tissue common in pulmonary diseases. To overcome this problem, we propose a multi-stage learning-based approach that combines anatomical information to predict an initialization of a statistical shape model of the lungs. The initialization first detects the carina of the trachea, and uses this to detect a set of automatically selected stable landmarks on regions near the lung (e.g., ribs, spine). These landmarks are used to align the shape model, which is then refined through boundary detection to obtain fine-grained segmentation. Robustness is obtained through hierarchical use of discriminative classifiers that are trained on a range of manually annotated data of diseased and healthy lungs. We demonstrate fast detection (35s per volume on average) and segmentation of 2 mm accuracy on challenging data. More... »

PAGES

667-674

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-23626-6_82

DOI

http://dx.doi.org/10.1007/978-3-642-23626-6_82

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039860552

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22003757


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cone-Beam Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnostic Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Siemens (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Image Analytics and Informatics, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sofka", 
        "givenName": "Michal", 
        "id": "sg:person.01106775343.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106775343.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Image Analytics and Informatics, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wetzl", 
        "givenName": "Jens", 
        "id": "sg:person.011457140245.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011457140245.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Image Analytics and Informatics, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Birkbeck", 
        "givenName": "Neil", 
        "id": "sg:person.011335616427.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011335616427.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Image Analytics and Informatics, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Jingdan", 
        "id": "sg:person.01223223743.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223223743.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Image Analytics and Informatics, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kohlberger", 
        "givenName": "Timo", 
        "id": "sg:person.01332544350.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332544350.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Molecular Imaging, Siemens Healthcare, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaftan", 
        "givenName": "Jens", 
        "id": "sg:person.015402751642.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015402751642.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Molecular Imaging, Siemens Healthcare, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Declerck", 
        "givenName": "J\u00e9r\u00f4me", 
        "id": "sg:person.01041576404.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041576404.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Image Analytics and Informatics, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "S. Kevin", 
        "id": "sg:person.01372425362.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372425362.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1118/1.3003066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013241548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3222872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020826779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2008.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033337138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.929615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061171044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2005.851757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061694740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2009.5193148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079113199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2010.5490285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093887215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2008.4587393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094872122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2010.5539842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095190200"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "Simple algorithms for segmenting healthy lung parenchyma in CT are unable to deal with high density tissue common in pulmonary diseases. To overcome this problem, we propose a multi-stage learning-based approach that combines anatomical information to predict an initialization of a statistical shape model of the lungs. The initialization first detects the carina of the trachea, and uses this to detect a set of automatically selected stable landmarks on regions near the lung (e.g., ribs, spine). These landmarks are used to align the shape model, which is then refined through boundary detection to obtain fine-grained segmentation. Robustness is obtained through hierarchical use of discriminative classifiers that are trained on a range of manually annotated data of diseased and healthy lungs. We demonstrate fast detection (35s per volume on average) and segmentation of 2 mm accuracy on challenging data.", 
    "editor": [
      {
        "familyName": "Fichtinger", 
        "givenName": "Gabor", 
        "type": "Person"
      }, 
      {
        "familyName": "Martel", 
        "givenName": "Anne", 
        "type": "Person"
      }, 
      {
        "familyName": "Peters", 
        "givenName": "Terry", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-23626-6_82", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-23625-9", 
        "978-3-642-23626-6"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2011", 
      "type": "Book"
    }, 
    "name": "Multi-stage Learning for Robust Lung Segmentation in Challenging CT Volumes", 
    "pagination": "667-674", 
    "productId": [
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22003757"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039860552"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-23626-6_82"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bde072b5e47b4b7bb2b144cfae03a01927a82beb53f41bb89ea36e9d7d73b9b1"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-23626-6_82", 
      "https://app.dimensions.ai/details/publication/pub.1039860552"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13081_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-23626-6_82"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23626-6_82'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23626-6_82'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23626-6_82'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23626-6_82'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      23 PREDICATES      48 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-23626-6_82 schema:about N050abb166f62477a98217227c62fba36
2 N064b4e7c651b4cbfb4b6a73ade4f9b3b
3 N6501a1cd96384d09a1f57ee02e1a88d9
4 N6a22b0aec66741e9989ac72254eb7b7f
5 N6e63038522504069bba9b9f425f6e44d
6 N718b3359f21843ef942a181d4e18ab32
7 N9788891924d34b40b79c83d41b647204
8 N9ad467682e364b88bc4dc41232835995
9 Ndd5f8c135f27466089a7ab374605edce
10 Ned43065e517e4e2490e18183f9d3afa8
11 Nf08e367663f14db182ad1fcade962e9f
12 anzsrc-for:08
13 anzsrc-for:0801
14 schema:author Ne87baae5ee3c427888ae010f11b651d1
15 schema:citation https://doi.org/10.1016/j.acra.2008.02.004
16 https://doi.org/10.1109/42.929615
17 https://doi.org/10.1109/cvpr.2008.4587393
18 https://doi.org/10.1109/cvpr.2010.5539842
19 https://doi.org/10.1109/isbi.2009.5193148
20 https://doi.org/10.1109/isbi.2010.5490285
21 https://doi.org/10.1109/tmi.2005.851757
22 https://doi.org/10.1118/1.3003066
23 https://doi.org/10.1118/1.3222872
24 schema:datePublished 2011
25 schema:datePublishedReg 2011-01-01
26 schema:description Simple algorithms for segmenting healthy lung parenchyma in CT are unable to deal with high density tissue common in pulmonary diseases. To overcome this problem, we propose a multi-stage learning-based approach that combines anatomical information to predict an initialization of a statistical shape model of the lungs. The initialization first detects the carina of the trachea, and uses this to detect a set of automatically selected stable landmarks on regions near the lung (e.g., ribs, spine). These landmarks are used to align the shape model, which is then refined through boundary detection to obtain fine-grained segmentation. Robustness is obtained through hierarchical use of discriminative classifiers that are trained on a range of manually annotated data of diseased and healthy lungs. We demonstrate fast detection (35s per volume on average) and segmentation of 2 mm accuracy on challenging data.
27 schema:editor N149c36f893d54392a55d6eed3df9c296
28 schema:genre chapter
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf Nf552d1e83cb3446988b6a10381dd96fe
32 schema:name Multi-stage Learning for Robust Lung Segmentation in Challenging CT Volumes
33 schema:pagination 667-674
34 schema:productId N623e0f7b5e534825abad9208dbe241cd
35 N6d060124453846729e8bc06fbd5fdf87
36 N840faa51e5ed476da37c244506078512
37 Ndaba79fa456548e6b91e8a6aba48f3c3
38 schema:publisher N990812b496f3444da71e5acfe10d1e89
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039860552
40 https://doi.org/10.1007/978-3-642-23626-6_82
41 schema:sdDatePublished 2019-04-16T09:34
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N7f4d29afc2f04d00997d0bddbc686514
44 schema:url https://link.springer.com/10.1007%2F978-3-642-23626-6_82
45 sgo:license sg:explorer/license/
46 sgo:sdDataset chapters
47 rdf:type schema:Chapter
48 N050abb166f62477a98217227c62fba36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
49 schema:name Pattern Recognition, Automated
50 rdf:type schema:DefinedTerm
51 N064b4e7c651b4cbfb4b6a73ade4f9b3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
52 schema:name Diagnostic Imaging
53 rdf:type schema:DefinedTerm
54 N08a288f8d4e145ce9968d2b871f49c8b schema:name Molecular Imaging, Siemens Healthcare, Oxford, UK
55 rdf:type schema:Organization
56 N149c36f893d54392a55d6eed3df9c296 rdf:first N4b75e8d65824431d8ab63d9bf2855286
57 rdf:rest Na071726a68064bd1bfdebdcd1b1fdf83
58 N320010b60aa147529e789f3d4e956db9 rdf:first sg:person.01041576404.70
59 rdf:rest N9dfebdc710024f2f813dbc0b58199781
60 N3ad6ac878acd4a5491f3ec606e113963 rdf:first sg:person.011335616427.66
61 rdf:rest Ne6561dbddf3e489a9ab29ce2034cecb7
62 N46c0340c549b42dd984d7d6d20741d34 schema:familyName Martel
63 schema:givenName Anne
64 rdf:type schema:Person
65 N4b75e8d65824431d8ab63d9bf2855286 schema:familyName Fichtinger
66 schema:givenName Gabor
67 rdf:type schema:Person
68 N5d3f49b21e764414a7850265bd390130 schema:name Molecular Imaging, Siemens Healthcare, Oxford, UK
69 rdf:type schema:Organization
70 N623e0f7b5e534825abad9208dbe241cd schema:name doi
71 schema:value 10.1007/978-3-642-23626-6_82
72 rdf:type schema:PropertyValue
73 N645f31c96d90472aa33ba73101674973 rdf:first sg:person.011457140245.32
74 rdf:rest N3ad6ac878acd4a5491f3ec606e113963
75 N6501a1cd96384d09a1f57ee02e1a88d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Algorithms
77 rdf:type schema:DefinedTerm
78 N6a22b0aec66741e9989ac72254eb7b7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Lung Neoplasms
80 rdf:type schema:DefinedTerm
81 N6d060124453846729e8bc06fbd5fdf87 schema:name dimensions_id
82 schema:value pub.1039860552
83 rdf:type schema:PropertyValue
84 N6e63038522504069bba9b9f425f6e44d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Lung
86 rdf:type schema:DefinedTerm
87 N718b3359f21843ef942a181d4e18ab32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Radiographic Image Interpretation, Computer-Assisted
89 rdf:type schema:DefinedTerm
90 N7f4d29afc2f04d00997d0bddbc686514 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N840faa51e5ed476da37c244506078512 schema:name readcube_id
93 schema:value bde072b5e47b4b7bb2b144cfae03a01927a82beb53f41bb89ea36e9d7d73b9b1
94 rdf:type schema:PropertyValue
95 N9788891924d34b40b79c83d41b647204 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Humans
97 rdf:type schema:DefinedTerm
98 N990812b496f3444da71e5acfe10d1e89 schema:location Berlin, Heidelberg
99 schema:name Springer Berlin Heidelberg
100 rdf:type schema:Organisation
101 N9ad467682e364b88bc4dc41232835995 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Software
103 rdf:type schema:DefinedTerm
104 N9dfebdc710024f2f813dbc0b58199781 rdf:first sg:person.01372425362.30
105 rdf:rest rdf:nil
106 Na071726a68064bd1bfdebdcd1b1fdf83 rdf:first N46c0340c549b42dd984d7d6d20741d34
107 rdf:rest Nb2ebb2ec926040458c26e98bd3c0266a
108 Naa3fa41d29f0440f94859ed81a797e33 rdf:first sg:person.01332544350.48
109 rdf:rest Nc2596d33a9924bed82ee2ef682ad3c20
110 Nb2ebb2ec926040458c26e98bd3c0266a rdf:first Nfa19d48527a44994968d1b2fdf8617a8
111 rdf:rest rdf:nil
112 Nc2596d33a9924bed82ee2ef682ad3c20 rdf:first sg:person.015402751642.30
113 rdf:rest N320010b60aa147529e789f3d4e956db9
114 Ndaba79fa456548e6b91e8a6aba48f3c3 schema:name pubmed_id
115 schema:value 22003757
116 rdf:type schema:PropertyValue
117 Ndd5f8c135f27466089a7ab374605edce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Learning
119 rdf:type schema:DefinedTerm
120 Ne6561dbddf3e489a9ab29ce2034cecb7 rdf:first sg:person.01223223743.98
121 rdf:rest Naa3fa41d29f0440f94859ed81a797e33
122 Ne87baae5ee3c427888ae010f11b651d1 rdf:first sg:person.01106775343.59
123 rdf:rest N645f31c96d90472aa33ba73101674973
124 Ned43065e517e4e2490e18183f9d3afa8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Models, Statistical
126 rdf:type schema:DefinedTerm
127 Nf08e367663f14db182ad1fcade962e9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Cone-Beam Computed Tomography
129 rdf:type schema:DefinedTerm
130 Nf552d1e83cb3446988b6a10381dd96fe schema:isbn 978-3-642-23625-9
131 978-3-642-23626-6
132 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2011
133 rdf:type schema:Book
134 Nfa19d48527a44994968d1b2fdf8617a8 schema:familyName Peters
135 schema:givenName Terry
136 rdf:type schema:Person
137 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
138 schema:name Information and Computing Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
141 schema:name Artificial Intelligence and Image Processing
142 rdf:type schema:DefinedTerm
143 sg:person.01041576404.70 schema:affiliation N5d3f49b21e764414a7850265bd390130
144 schema:familyName Declerck
145 schema:givenName Jérôme
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041576404.70
147 rdf:type schema:Person
148 sg:person.01106775343.59 schema:affiliation https://www.grid.ac/institutes/grid.419233.e
149 schema:familyName Sofka
150 schema:givenName Michal
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106775343.59
152 rdf:type schema:Person
153 sg:person.011335616427.66 schema:affiliation https://www.grid.ac/institutes/grid.419233.e
154 schema:familyName Birkbeck
155 schema:givenName Neil
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011335616427.66
157 rdf:type schema:Person
158 sg:person.011457140245.32 schema:affiliation https://www.grid.ac/institutes/grid.419233.e
159 schema:familyName Wetzl
160 schema:givenName Jens
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011457140245.32
162 rdf:type schema:Person
163 sg:person.01223223743.98 schema:affiliation https://www.grid.ac/institutes/grid.419233.e
164 schema:familyName Zhang
165 schema:givenName Jingdan
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223223743.98
167 rdf:type schema:Person
168 sg:person.01332544350.48 schema:affiliation https://www.grid.ac/institutes/grid.419233.e
169 schema:familyName Kohlberger
170 schema:givenName Timo
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332544350.48
172 rdf:type schema:Person
173 sg:person.01372425362.30 schema:affiliation https://www.grid.ac/institutes/grid.419233.e
174 schema:familyName Zhou
175 schema:givenName S. Kevin
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372425362.30
177 rdf:type schema:Person
178 sg:person.015402751642.30 schema:affiliation N08a288f8d4e145ce9968d2b871f49c8b
179 schema:familyName Kaftan
180 schema:givenName Jens
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015402751642.30
182 rdf:type schema:Person
183 https://doi.org/10.1016/j.acra.2008.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033337138
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/42.929615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061171044
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/cvpr.2008.4587393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094872122
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/cvpr.2010.5539842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095190200
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/isbi.2009.5193148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079113199
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/isbi.2010.5490285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093887215
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/tmi.2005.851757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694740
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1118/1.3003066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013241548
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1118/1.3222872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020826779
200 rdf:type schema:CreativeWork
201 https://www.grid.ac/institutes/grid.419233.e schema:alternateName Siemens (United States)
202 schema:name Image Analytics and Informatics, Siemens Corporate Research, Princeton, NJ, USA
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...