Multi-stage Learning for Robust Lung Segmentation in Challenging CT Volumes View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2011

AUTHORS

Michal Sofka , Jens Wetzl , Neil Birkbeck , Jingdan Zhang , Timo Kohlberger , Jens Kaftan , Jérôme Declerck , S. Kevin Zhou

ABSTRACT

Simple algorithms for segmenting healthy lung parenchyma in CT are unable to deal with high density tissue common in pulmonary diseases. To overcome this problem, we propose a multi-stage learning-based approach that combines anatomical information to predict an initialization of a statistical shape model of the lungs. The initialization first detects the carina of the trachea, and uses this to detect a set of automatically selected stable landmarks on regions near the lung (e.g., ribs, spine). These landmarks are used to align the shape model, which is then refined through boundary detection to obtain fine-grained segmentation. Robustness is obtained through hierarchical use of discriminative classifiers that are trained on a range of manually annotated data of diseased and healthy lungs. We demonstrate fast detection (35s per volume on average) and segmentation of 2 mm accuracy on challenging data. More... »

PAGES

667-674

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-23626-6_82

DOI

http://dx.doi.org/10.1007/978-3-642-23626-6_82

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039860552

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22003757


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cone-Beam Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnostic Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Siemens (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Image Analytics and Informatics, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sofka", 
        "givenName": "Michal", 
        "id": "sg:person.01106775343.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106775343.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Image Analytics and Informatics, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wetzl", 
        "givenName": "Jens", 
        "id": "sg:person.011457140245.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011457140245.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Image Analytics and Informatics, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Birkbeck", 
        "givenName": "Neil", 
        "id": "sg:person.011335616427.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011335616427.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Image Analytics and Informatics, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Jingdan", 
        "id": "sg:person.01223223743.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223223743.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Image Analytics and Informatics, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kohlberger", 
        "givenName": "Timo", 
        "id": "sg:person.01332544350.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332544350.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Molecular Imaging, Siemens Healthcare, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaftan", 
        "givenName": "Jens", 
        "id": "sg:person.015402751642.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015402751642.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Molecular Imaging, Siemens Healthcare, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Declerck", 
        "givenName": "J\u00e9r\u00f4me", 
        "id": "sg:person.01041576404.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041576404.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Image Analytics and Informatics, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "S. Kevin", 
        "id": "sg:person.01372425362.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372425362.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1118/1.3003066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013241548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3222872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020826779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2008.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033337138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.929615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061171044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2005.851757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061694740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2009.5193148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079113199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2010.5490285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093887215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2008.4587393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094872122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2010.5539842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095190200"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "Simple algorithms for segmenting healthy lung parenchyma in CT are unable to deal with high density tissue common in pulmonary diseases. To overcome this problem, we propose a multi-stage learning-based approach that combines anatomical information to predict an initialization of a statistical shape model of the lungs. The initialization first detects the carina of the trachea, and uses this to detect a set of automatically selected stable landmarks on regions near the lung (e.g., ribs, spine). These landmarks are used to align the shape model, which is then refined through boundary detection to obtain fine-grained segmentation. Robustness is obtained through hierarchical use of discriminative classifiers that are trained on a range of manually annotated data of diseased and healthy lungs. We demonstrate fast detection (35s per volume on average) and segmentation of 2 mm accuracy on challenging data.", 
    "editor": [
      {
        "familyName": "Fichtinger", 
        "givenName": "Gabor", 
        "type": "Person"
      }, 
      {
        "familyName": "Martel", 
        "givenName": "Anne", 
        "type": "Person"
      }, 
      {
        "familyName": "Peters", 
        "givenName": "Terry", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-23626-6_82", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-23625-9", 
        "978-3-642-23626-6"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2011", 
      "type": "Book"
    }, 
    "name": "Multi-stage Learning for Robust Lung Segmentation in Challenging CT Volumes", 
    "pagination": "667-674", 
    "productId": [
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22003757"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039860552"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-23626-6_82"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bde072b5e47b4b7bb2b144cfae03a01927a82beb53f41bb89ea36e9d7d73b9b1"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-23626-6_82", 
      "https://app.dimensions.ai/details/publication/pub.1039860552"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13081_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-23626-6_82"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23626-6_82'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23626-6_82'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23626-6_82'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23626-6_82'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      23 PREDICATES      48 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-23626-6_82 schema:about N511912deb16a41cc81afa5429a6f9d6e
2 N5556425dc15245068c2a1d65ae93946b
3 N7327eb975e1b480a96dd2290f2296129
4 N812a7511344d41e3859a0b63c4d2af37
5 Na8cb4056335844fc9978aee9830b27bb
6 Nb1f341f31439484babc93677d8c8c2d5
7 Nb76c62126b1d4989ac2070e36b8bea95
8 Nd9b5b9325d494c04a97b6caff6709086
9 Ndbce8c8310a5458aa4a23f69227861af
10 Ne699ee00e2c14a4faf275903c4174737
11 Nf03748a2d0cf4a72a4ed27e90341c42f
12 anzsrc-for:08
13 anzsrc-for:0801
14 schema:author N428fed8c955545c09b364a5be7d14175
15 schema:citation https://doi.org/10.1016/j.acra.2008.02.004
16 https://doi.org/10.1109/42.929615
17 https://doi.org/10.1109/cvpr.2008.4587393
18 https://doi.org/10.1109/cvpr.2010.5539842
19 https://doi.org/10.1109/isbi.2009.5193148
20 https://doi.org/10.1109/isbi.2010.5490285
21 https://doi.org/10.1109/tmi.2005.851757
22 https://doi.org/10.1118/1.3003066
23 https://doi.org/10.1118/1.3222872
24 schema:datePublished 2011
25 schema:datePublishedReg 2011-01-01
26 schema:description Simple algorithms for segmenting healthy lung parenchyma in CT are unable to deal with high density tissue common in pulmonary diseases. To overcome this problem, we propose a multi-stage learning-based approach that combines anatomical information to predict an initialization of a statistical shape model of the lungs. The initialization first detects the carina of the trachea, and uses this to detect a set of automatically selected stable landmarks on regions near the lung (e.g., ribs, spine). These landmarks are used to align the shape model, which is then refined through boundary detection to obtain fine-grained segmentation. Robustness is obtained through hierarchical use of discriminative classifiers that are trained on a range of manually annotated data of diseased and healthy lungs. We demonstrate fast detection (35s per volume on average) and segmentation of 2 mm accuracy on challenging data.
27 schema:editor N66e131426e784569905303d2e7bb4016
28 schema:genre chapter
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf Nb0f787ebf25d4c8eb3d22bd04bdef978
32 schema:name Multi-stage Learning for Robust Lung Segmentation in Challenging CT Volumes
33 schema:pagination 667-674
34 schema:productId N1d0dee62779444e28cbbd15d4a39e17f
35 N337a52e8126f444eb8f2edcb2fd7c538
36 N6dfd0bd68b5d4a0fb2b723f091ffe252
37 Nb4c9e2214a88435db06176c8e887ada2
38 schema:publisher Na0a909471f244c4792f2482a7e758f85
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039860552
40 https://doi.org/10.1007/978-3-642-23626-6_82
41 schema:sdDatePublished 2019-04-16T09:34
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N1ceab468379e49aca464d7432c99231d
44 schema:url https://link.springer.com/10.1007%2F978-3-642-23626-6_82
45 sgo:license sg:explorer/license/
46 sgo:sdDataset chapters
47 rdf:type schema:Chapter
48 N1761286d92534909a7fb3973d96ad587 schema:familyName Peters
49 schema:givenName Terry
50 rdf:type schema:Person
51 N1ceab468379e49aca464d7432c99231d schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N1d0dee62779444e28cbbd15d4a39e17f schema:name dimensions_id
54 schema:value pub.1039860552
55 rdf:type schema:PropertyValue
56 N2cc4465b159949f78f4e5c0917da0e60 rdf:first sg:person.01223223743.98
57 rdf:rest N685d44a76cdc4e5f973cd2c865aa6869
58 N31cda9c9d3f34cfa9123301fa20626b0 schema:name Molecular Imaging, Siemens Healthcare, Oxford, UK
59 rdf:type schema:Organization
60 N337a52e8126f444eb8f2edcb2fd7c538 schema:name pubmed_id
61 schema:value 22003757
62 rdf:type schema:PropertyValue
63 N428fed8c955545c09b364a5be7d14175 rdf:first sg:person.01106775343.59
64 rdf:rest N7b6c97a09f7a499baa15a4e27976f44d
65 N511912deb16a41cc81afa5429a6f9d6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Pattern Recognition, Automated
67 rdf:type schema:DefinedTerm
68 N5556425dc15245068c2a1d65ae93946b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Algorithms
70 rdf:type schema:DefinedTerm
71 N662cd6ca28ac479198db92a25c3a1699 schema:familyName Fichtinger
72 schema:givenName Gabor
73 rdf:type schema:Person
74 N66e131426e784569905303d2e7bb4016 rdf:first N662cd6ca28ac479198db92a25c3a1699
75 rdf:rest Nade6eba9e3c34b02973c7aaedbf26912
76 N685d44a76cdc4e5f973cd2c865aa6869 rdf:first sg:person.01332544350.48
77 rdf:rest Nbbd3738bbaba4a55bb88c7581b9a07b2
78 N6dfd0bd68b5d4a0fb2b723f091ffe252 schema:name doi
79 schema:value 10.1007/978-3-642-23626-6_82
80 rdf:type schema:PropertyValue
81 N6e122fa29233409c9c936bc81cccaf00 rdf:first sg:person.011335616427.66
82 rdf:rest N2cc4465b159949f78f4e5c0917da0e60
83 N7327eb975e1b480a96dd2290f2296129 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Lung Neoplasms
85 rdf:type schema:DefinedTerm
86 N7b6c97a09f7a499baa15a4e27976f44d rdf:first sg:person.011457140245.32
87 rdf:rest N6e122fa29233409c9c936bc81cccaf00
88 N812a7511344d41e3859a0b63c4d2af37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Lung
90 rdf:type schema:DefinedTerm
91 N852245beee174388b0b4d01107dfefdc rdf:first sg:person.01041576404.70
92 rdf:rest Nb8c8ed99d09d4e4cac2b7708a39754b5
93 Na0a909471f244c4792f2482a7e758f85 schema:location Berlin, Heidelberg
94 schema:name Springer Berlin Heidelberg
95 rdf:type schema:Organisation
96 Na8cb4056335844fc9978aee9830b27bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Radiographic Image Interpretation, Computer-Assisted
98 rdf:type schema:DefinedTerm
99 Nade6eba9e3c34b02973c7aaedbf26912 rdf:first Ne726cacfdf5e4264afd7f7da6a2d1bfd
100 rdf:rest Nf2e2c9e340724b4f9f9addae3e556092
101 Nb0f787ebf25d4c8eb3d22bd04bdef978 schema:isbn 978-3-642-23625-9
102 978-3-642-23626-6
103 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2011
104 rdf:type schema:Book
105 Nb1f341f31439484babc93677d8c8c2d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Cone-Beam Computed Tomography
107 rdf:type schema:DefinedTerm
108 Nb4c9e2214a88435db06176c8e887ada2 schema:name readcube_id
109 schema:value bde072b5e47b4b7bb2b144cfae03a01927a82beb53f41bb89ea36e9d7d73b9b1
110 rdf:type schema:PropertyValue
111 Nb76c62126b1d4989ac2070e36b8bea95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Learning
113 rdf:type schema:DefinedTerm
114 Nb8c8ed99d09d4e4cac2b7708a39754b5 rdf:first sg:person.01372425362.30
115 rdf:rest rdf:nil
116 Nbbd3738bbaba4a55bb88c7581b9a07b2 rdf:first sg:person.015402751642.30
117 rdf:rest N852245beee174388b0b4d01107dfefdc
118 Nd9b5b9325d494c04a97b6caff6709086 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Models, Statistical
120 rdf:type schema:DefinedTerm
121 Nd9c4667e2d054cf49d01587b5ee2b4a3 schema:name Molecular Imaging, Siemens Healthcare, Oxford, UK
122 rdf:type schema:Organization
123 Ndbce8c8310a5458aa4a23f69227861af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Humans
125 rdf:type schema:DefinedTerm
126 Ne699ee00e2c14a4faf275903c4174737 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Diagnostic Imaging
128 rdf:type schema:DefinedTerm
129 Ne726cacfdf5e4264afd7f7da6a2d1bfd schema:familyName Martel
130 schema:givenName Anne
131 rdf:type schema:Person
132 Nf03748a2d0cf4a72a4ed27e90341c42f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Software
134 rdf:type schema:DefinedTerm
135 Nf2e2c9e340724b4f9f9addae3e556092 rdf:first N1761286d92534909a7fb3973d96ad587
136 rdf:rest rdf:nil
137 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
138 schema:name Information and Computing Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
141 schema:name Artificial Intelligence and Image Processing
142 rdf:type schema:DefinedTerm
143 sg:person.01041576404.70 schema:affiliation N31cda9c9d3f34cfa9123301fa20626b0
144 schema:familyName Declerck
145 schema:givenName Jérôme
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041576404.70
147 rdf:type schema:Person
148 sg:person.01106775343.59 schema:affiliation https://www.grid.ac/institutes/grid.419233.e
149 schema:familyName Sofka
150 schema:givenName Michal
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106775343.59
152 rdf:type schema:Person
153 sg:person.011335616427.66 schema:affiliation https://www.grid.ac/institutes/grid.419233.e
154 schema:familyName Birkbeck
155 schema:givenName Neil
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011335616427.66
157 rdf:type schema:Person
158 sg:person.011457140245.32 schema:affiliation https://www.grid.ac/institutes/grid.419233.e
159 schema:familyName Wetzl
160 schema:givenName Jens
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011457140245.32
162 rdf:type schema:Person
163 sg:person.01223223743.98 schema:affiliation https://www.grid.ac/institutes/grid.419233.e
164 schema:familyName Zhang
165 schema:givenName Jingdan
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223223743.98
167 rdf:type schema:Person
168 sg:person.01332544350.48 schema:affiliation https://www.grid.ac/institutes/grid.419233.e
169 schema:familyName Kohlberger
170 schema:givenName Timo
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332544350.48
172 rdf:type schema:Person
173 sg:person.01372425362.30 schema:affiliation https://www.grid.ac/institutes/grid.419233.e
174 schema:familyName Zhou
175 schema:givenName S. Kevin
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372425362.30
177 rdf:type schema:Person
178 sg:person.015402751642.30 schema:affiliation Nd9c4667e2d054cf49d01587b5ee2b4a3
179 schema:familyName Kaftan
180 schema:givenName Jens
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015402751642.30
182 rdf:type schema:Person
183 https://doi.org/10.1016/j.acra.2008.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033337138
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/42.929615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061171044
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/cvpr.2008.4587393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094872122
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/cvpr.2010.5539842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095190200
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/isbi.2009.5193148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079113199
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/isbi.2010.5490285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093887215
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/tmi.2005.851757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694740
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1118/1.3003066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013241548
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1118/1.3222872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020826779
200 rdf:type schema:CreativeWork
201 https://www.grid.ac/institutes/grid.419233.e schema:alternateName Siemens (United States)
202 schema:name Image Analytics and Informatics, Siemens Corporate Research, Princeton, NJ, USA
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...