Robust Physically-Constrained Modeling of the Mitral Valve and Subvalvular Apparatus View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2011

AUTHORS

Ingmar Voigt , Tommaso Mansi , Razvan Ioan Ionasec , Etienne Assoumou Mengue , Helene Houle , Bogdan Georgescu , Joachim Hornegger , Dorin Comaniciu

ABSTRACT

Mitral valve (MV) is often involved in cardiac diseases, with various pathological patterns that require a systemic view of the entire MV apparatus. Due to its complex shape and dynamics, patient-specific modeling of the MV constitutes a particular challenge. We propose a novel approach for personalized modeling of the dynamic MV and its subvalvular apparatus that ensures temporal consistency over the cardiac sequence and provides realistic deformations. The idea is to detect the anatomical MV components under constraints derived from the biomechanical properties of the leaflets. This is achieved by a robust two-step alternate algorithm that combines discriminative learning and leaflet biomechanics. Extensive evaluation on 200 transesophageal echochardiographic sequences showed an average Hausdorff error of 5.1mm at a speed of 9sec, which constitutes an improvement of up to 11.5% compared to purely data driven approaches. Clinical evaluation on 42 subjects showed, that the proposed fully-automatic approach could provide discriminant biomarkers to detect and quantify remodeling of annulus and leaflets in functional mitral regurgitation. More... »

PAGES

504-511

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-23626-6_62

DOI

http://dx.doi.org/10.1007/978-3-642-23626-6_62

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050901551

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22003737


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Automation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomechanical Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Echocardiography, Transesophageal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mitral Valve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Anatomic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pattern Recognition Lab, University of Erlangen-Nuremberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Image Analytics and Informatics, Siemens Corporate Research, Princeton, USA", 
            "Pattern Recognition Lab, University of Erlangen-Nuremberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Voigt", 
        "givenName": "Ingmar", 
        "id": "sg:person.0751662414.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751662414.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Image Analytics and Informatics, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Image Analytics and Informatics, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mansi", 
        "givenName": "Tommaso", 
        "id": "sg:person.01217474726.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217474726.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Image Analytics and Informatics, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Image Analytics and Informatics, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ionasec", 
        "givenName": "Razvan Ioan", 
        "id": "sg:person.01010560470.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010560470.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Image Analytics and Informatics, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Image Analytics and Informatics, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mengue", 
        "givenName": "Etienne Assoumou", 
        "id": "sg:person.01172441345.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172441345.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ultrasound, PLM-Innovation, Siemens Healthcare, Mountain View, CA, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Ultrasound, PLM-Innovation, Siemens Healthcare, Mountain View, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Houle", 
        "givenName": "Helene", 
        "id": "sg:person.01263427657.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263427657.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Image Analytics and Informatics, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Image Analytics and Informatics, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "Bogdan", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pattern Recognition Lab, University of Erlangen-Nuremberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Pattern Recognition Lab, University of Erlangen-Nuremberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hornegger", 
        "givenName": "Joachim", 
        "id": "sg:person.01322323610.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322323610.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Image Analytics and Informatics, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Image Analytics and Informatics, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "Mitral valve (MV) is often involved in cardiac diseases, with various pathological patterns that require a systemic view of the entire MV apparatus. Due to its complex shape and dynamics, patient-specific modeling of the MV constitutes a particular challenge. We propose a novel approach for personalized modeling of the dynamic MV and its subvalvular apparatus that ensures temporal consistency over the cardiac sequence and provides realistic deformations. The idea is to detect the anatomical MV components under constraints derived from the biomechanical properties of the leaflets. This is achieved by a robust two-step alternate algorithm that combines discriminative learning and leaflet biomechanics. Extensive evaluation on 200 transesophageal echochardiographic sequences showed an average Hausdorff error of 5.1mm at a speed of 9sec, which constitutes an improvement of up to 11.5% compared to purely data driven approaches. Clinical evaluation on 42 subjects showed, that the proposed fully-automatic approach could provide discriminant biomarkers to detect and quantify remodeling of annulus and leaflets in functional mitral regurgitation.", 
    "editor": [
      {
        "familyName": "Fichtinger", 
        "givenName": "Gabor", 
        "type": "Person"
      }, 
      {
        "familyName": "Martel", 
        "givenName": "Anne", 
        "type": "Person"
      }, 
      {
        "familyName": "Peters", 
        "givenName": "Terry", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-23626-6_62", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-23625-9", 
        "978-3-642-23626-6"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2011", 
      "type": "Book"
    }, 
    "keywords": [
      "patient-specific modeling", 
      "automatic approach", 
      "temporal consistency", 
      "personalized modeling", 
      "extensive evaluation", 
      "cardiac sequence", 
      "alternate algorithm", 
      "Hausdorff error", 
      "realistic deformations", 
      "novel approach", 
      "modeling", 
      "systemic view", 
      "algorithm", 
      "complex shapes", 
      "robust", 
      "particular challenges", 
      "approach", 
      "learning", 
      "constraints", 
      "MV apparatus", 
      "MV components", 
      "dynamics", 
      "error", 
      "discriminant biomarkers", 
      "challenges", 
      "idea", 
      "speed", 
      "evaluation", 
      "consistency", 
      "sequence", 
      "view", 
      "data", 
      "improvement", 
      "components", 
      "properties", 
      "mitral valve", 
      "subvalvular apparatus", 
      "shape", 
      "annulus", 
      "patterns", 
      "functional mitral regurgitation", 
      "deformation", 
      "pathological patterns", 
      "biomechanics", 
      "mitral regurgitation", 
      "clinical evaluation", 
      "cardiac disease", 
      "valve", 
      "biomechanical properties", 
      "regurgitation", 
      "disease", 
      "leaflets", 
      "apparatus", 
      "biomarkers", 
      "remodeling", 
      "subjects", 
      "entire MV apparatus", 
      "dynamic MV", 
      "anatomical MV components", 
      "two-step alternate algorithm", 
      "leaflet biomechanics", 
      "transesophageal echochardiographic sequences", 
      "echochardiographic sequences", 
      "average Hausdorff error", 
      "remodeling of annulus"
    ], 
    "name": "Robust Physically-Constrained Modeling of the Mitral Valve and Subvalvular Apparatus", 
    "pagination": "504-511", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050901551"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-23626-6_62"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22003737"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-23626-6_62", 
      "https://app.dimensions.ai/details/publication/pub.1050901551"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_356.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-23626-6_62"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23626-6_62'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23626-6_62'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23626-6_62'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23626-6_62'


 

This table displays all metadata directly associated to this object as RDF triples.

243 TRIPLES      23 PREDICATES      104 URIs      97 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-23626-6_62 schema:about N0ca51ba5084140f0954bcffa946b814f
2 N222cbf149dcd40c0aabba9b0eb6c5459
3 N690450ee21164253af5e011aad674e48
4 N8f6abdc9afee4defb2d2abfcaa4f3de6
5 N909aea750aaf4e9fa4695e2f0d0e5bf0
6 N930050343c414944a35d4401f09f21f0
7 Nabdbeb3da05241edb6a8a0c824c849af
8 Nb5ef890162ed4b6bbb844f1d07a7b36c
9 Nbfaf8edd30ce4aaeb1066c06e0096c6b
10 Nc7d93f5526fa4d1a919afdd4f20db55b
11 Nd29ff5a0995242f999d61c68bc519d63
12 Nf27c75da3d3844e0b9a39579ea07bda2
13 anzsrc-for:09
14 anzsrc-for:0903
15 schema:author N76ecfb00c2624c5fa11d6e014676d63f
16 schema:datePublished 2011
17 schema:datePublishedReg 2011-01-01
18 schema:description Mitral valve (MV) is often involved in cardiac diseases, with various pathological patterns that require a systemic view of the entire MV apparatus. Due to its complex shape and dynamics, patient-specific modeling of the MV constitutes a particular challenge. We propose a novel approach for personalized modeling of the dynamic MV and its subvalvular apparatus that ensures temporal consistency over the cardiac sequence and provides realistic deformations. The idea is to detect the anatomical MV components under constraints derived from the biomechanical properties of the leaflets. This is achieved by a robust two-step alternate algorithm that combines discriminative learning and leaflet biomechanics. Extensive evaluation on 200 transesophageal echochardiographic sequences showed an average Hausdorff error of 5.1mm at a speed of 9sec, which constitutes an improvement of up to 11.5% compared to purely data driven approaches. Clinical evaluation on 42 subjects showed, that the proposed fully-automatic approach could provide discriminant biomarkers to detect and quantify remodeling of annulus and leaflets in functional mitral regurgitation.
19 schema:editor Nfc4e17c1a9094be4863656191de21aef
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf Nbf59d970109449c8af459c6577e70b8c
24 schema:keywords Hausdorff error
25 MV apparatus
26 MV components
27 algorithm
28 alternate algorithm
29 anatomical MV components
30 annulus
31 apparatus
32 approach
33 automatic approach
34 average Hausdorff error
35 biomarkers
36 biomechanical properties
37 biomechanics
38 cardiac disease
39 cardiac sequence
40 challenges
41 clinical evaluation
42 complex shapes
43 components
44 consistency
45 constraints
46 data
47 deformation
48 discriminant biomarkers
49 disease
50 dynamic MV
51 dynamics
52 echochardiographic sequences
53 entire MV apparatus
54 error
55 evaluation
56 extensive evaluation
57 functional mitral regurgitation
58 idea
59 improvement
60 leaflet biomechanics
61 leaflets
62 learning
63 mitral regurgitation
64 mitral valve
65 modeling
66 novel approach
67 particular challenges
68 pathological patterns
69 patient-specific modeling
70 patterns
71 personalized modeling
72 properties
73 realistic deformations
74 regurgitation
75 remodeling
76 remodeling of annulus
77 robust
78 sequence
79 shape
80 speed
81 subjects
82 subvalvular apparatus
83 systemic view
84 temporal consistency
85 transesophageal echochardiographic sequences
86 two-step alternate algorithm
87 valve
88 view
89 schema:name Robust Physically-Constrained Modeling of the Mitral Valve and Subvalvular Apparatus
90 schema:pagination 504-511
91 schema:productId N2e035970bd214c0eab3289dba9c71077
92 N44b33bdc3a424c9b9b556f1725b9b4ad
93 N604d21e840504420a5700175a080605a
94 schema:publisher Ndf2bb79bc6cb45148f7b4504cc94b9b2
95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050901551
96 https://doi.org/10.1007/978-3-642-23626-6_62
97 schema:sdDatePublished 2022-01-01T19:20
98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
99 schema:sdPublisher N091c0dc557484df0805b3ef6b8c8bad9
100 schema:url https://doi.org/10.1007/978-3-642-23626-6_62
101 sgo:license sg:explorer/license/
102 sgo:sdDataset chapters
103 rdf:type schema:Chapter
104 N091c0dc557484df0805b3ef6b8c8bad9 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N0ca51ba5084140f0954bcffa946b814f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Image Processing, Computer-Assisted
108 rdf:type schema:DefinedTerm
109 N10412749487847cdb19ccb647cf827f1 rdf:first sg:person.01263427657.06
110 rdf:rest Nbcd573be98c14f31ba4f3dacda84f8b8
111 N222cbf149dcd40c0aabba9b0eb6c5459 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Software
113 rdf:type schema:DefinedTerm
114 N2a677053682b43cab212dd029464d330 rdf:first sg:person.01066111014.77
115 rdf:rest rdf:nil
116 N2b3986500cd5425891589e74c688692c rdf:first sg:person.01010560470.38
117 rdf:rest N77e8fd37de7a431898218f639b0eab77
118 N2e035970bd214c0eab3289dba9c71077 schema:name pubmed_id
119 schema:value 22003737
120 rdf:type schema:PropertyValue
121 N44b33bdc3a424c9b9b556f1725b9b4ad schema:name doi
122 schema:value 10.1007/978-3-642-23626-6_62
123 rdf:type schema:PropertyValue
124 N44ff2bd02f9645d990a2822082859d7e schema:familyName Peters
125 schema:givenName Terry
126 rdf:type schema:Person
127 N48eadea22a4d47999af97a5e9ca3c3c9 schema:familyName Fichtinger
128 schema:givenName Gabor
129 rdf:type schema:Person
130 N4b3e9bd4b9334e6b89e6ae7a45d61421 rdf:first N44ff2bd02f9645d990a2822082859d7e
131 rdf:rest rdf:nil
132 N604d21e840504420a5700175a080605a schema:name dimensions_id
133 schema:value pub.1050901551
134 rdf:type schema:PropertyValue
135 N690450ee21164253af5e011aad674e48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Biomechanical Phenomena
137 rdf:type schema:DefinedTerm
138 N76ecfb00c2624c5fa11d6e014676d63f rdf:first sg:person.0751662414.66
139 rdf:rest Ndcffb5cc8720401793b3d92d47517911
140 N77e8fd37de7a431898218f639b0eab77 rdf:first sg:person.01172441345.70
141 rdf:rest N10412749487847cdb19ccb647cf827f1
142 N877d1fe456984624bbc340761d851760 rdf:first Nb46a97db0ef8406888b2f581218cc981
143 rdf:rest N4b3e9bd4b9334e6b89e6ae7a45d61421
144 N8f6abdc9afee4defb2d2abfcaa4f3de6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Artificial Intelligence
146 rdf:type schema:DefinedTerm
147 N909aea750aaf4e9fa4695e2f0d0e5bf0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Mitral Valve
149 rdf:type schema:DefinedTerm
150 N930050343c414944a35d4401f09f21f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Humans
152 rdf:type schema:DefinedTerm
153 Nabdbeb3da05241edb6a8a0c824c849af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Echocardiography, Transesophageal
155 rdf:type schema:DefinedTerm
156 Nb46a97db0ef8406888b2f581218cc981 schema:familyName Martel
157 schema:givenName Anne
158 rdf:type schema:Person
159 Nb5ef890162ed4b6bbb844f1d07a7b36c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Automation
161 rdf:type schema:DefinedTerm
162 Nbcd573be98c14f31ba4f3dacda84f8b8 rdf:first sg:person.0703547214.37
163 rdf:rest Ndf78699e015e41a798885b905fe2cba6
164 Nbf59d970109449c8af459c6577e70b8c schema:isbn 978-3-642-23625-9
165 978-3-642-23626-6
166 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2011
167 rdf:type schema:Book
168 Nbfaf8edd30ce4aaeb1066c06e0096c6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Algorithms
170 rdf:type schema:DefinedTerm
171 Nc7d93f5526fa4d1a919afdd4f20db55b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Imaging, Three-Dimensional
173 rdf:type schema:DefinedTerm
174 Nd29ff5a0995242f999d61c68bc519d63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Models, Anatomic
176 rdf:type schema:DefinedTerm
177 Ndcffb5cc8720401793b3d92d47517911 rdf:first sg:person.01217474726.73
178 rdf:rest N2b3986500cd5425891589e74c688692c
179 Ndf2bb79bc6cb45148f7b4504cc94b9b2 schema:name Springer Nature
180 rdf:type schema:Organisation
181 Ndf78699e015e41a798885b905fe2cba6 rdf:first sg:person.01322323610.92
182 rdf:rest N2a677053682b43cab212dd029464d330
183 Nf27c75da3d3844e0b9a39579ea07bda2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Pattern Recognition, Automated
185 rdf:type schema:DefinedTerm
186 Nfc4e17c1a9094be4863656191de21aef rdf:first N48eadea22a4d47999af97a5e9ca3c3c9
187 rdf:rest N877d1fe456984624bbc340761d851760
188 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
189 schema:name Engineering
190 rdf:type schema:DefinedTerm
191 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
192 schema:name Biomedical Engineering
193 rdf:type schema:DefinedTerm
194 sg:person.01010560470.38 schema:affiliation grid-institutes:grid.419233.e
195 schema:familyName Ionasec
196 schema:givenName Razvan Ioan
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010560470.38
198 rdf:type schema:Person
199 sg:person.01066111014.77 schema:affiliation grid-institutes:grid.419233.e
200 schema:familyName Comaniciu
201 schema:givenName Dorin
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
203 rdf:type schema:Person
204 sg:person.01172441345.70 schema:affiliation grid-institutes:grid.419233.e
205 schema:familyName Mengue
206 schema:givenName Etienne Assoumou
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172441345.70
208 rdf:type schema:Person
209 sg:person.01217474726.73 schema:affiliation grid-institutes:grid.419233.e
210 schema:familyName Mansi
211 schema:givenName Tommaso
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217474726.73
213 rdf:type schema:Person
214 sg:person.01263427657.06 schema:affiliation grid-institutes:None
215 schema:familyName Houle
216 schema:givenName Helene
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263427657.06
218 rdf:type schema:Person
219 sg:person.01322323610.92 schema:affiliation grid-institutes:grid.5330.5
220 schema:familyName Hornegger
221 schema:givenName Joachim
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322323610.92
223 rdf:type schema:Person
224 sg:person.0703547214.37 schema:affiliation grid-institutes:grid.419233.e
225 schema:familyName Georgescu
226 schema:givenName Bogdan
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
228 rdf:type schema:Person
229 sg:person.0751662414.66 schema:affiliation grid-institutes:grid.5330.5
230 schema:familyName Voigt
231 schema:givenName Ingmar
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751662414.66
233 rdf:type schema:Person
234 grid-institutes:None schema:alternateName Ultrasound, PLM-Innovation, Siemens Healthcare, Mountain View, CA, USA
235 schema:name Ultrasound, PLM-Innovation, Siemens Healthcare, Mountain View, CA, USA
236 rdf:type schema:Organization
237 grid-institutes:grid.419233.e schema:alternateName Image Analytics and Informatics, Siemens Corporate Research, Princeton, USA
238 schema:name Image Analytics and Informatics, Siemens Corporate Research, Princeton, USA
239 rdf:type schema:Organization
240 grid-institutes:grid.5330.5 schema:alternateName Pattern Recognition Lab, University of Erlangen-Nuremberg, Germany
241 schema:name Image Analytics and Informatics, Siemens Corporate Research, Princeton, USA
242 Pattern Recognition Lab, University of Erlangen-Nuremberg, Germany
243 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...