Automatic View Planning for Cardiac MRI Acquisition View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2011

AUTHORS

Xiaoguang Lu , Marie-Pierre Jolly , Bogdan Georgescu , Carmel Hayes , Peter Speier , Michaela Schmidt , Xiaoming Bi , Randall Kroeker , Dorin Comaniciu , Peter Kellman , Edgar Mueller , Jens Guehring

ABSTRACT

Conventional cardiac MRI acquisition involves a multi-step approach, requiring a few double-oblique localizers in order to locate the heart and prescribe long- and short-axis views of the heart. This approach is operator-dependent and time-consuming. We propose a new approach to automating and accelerating the acquisition process to improve the clinical workflow. We capture a highly accelerated static 3D full-chest volume through parallel imaging within one breath-hold. The left ventricle is localized and segmented, including left ventricle outflow tract. A number of cardiac landmarks are then detected to anchor the cardiac chambers and calculate standard 2-, 3-, and 4-chamber long-axis views along with a short-axis stack. Learning-based algorithms are applied to anatomy segmentation and anchor detection. The proposed algorithm is evaluated on 173 localizer acquisitions. The entire view planning is fully automatic and takes less than 10 seconds in our experiments. More... »

PAGES

479-486

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-23626-6_59

DOI

http://dx.doi.org/10.1007/978-3-642-23626-6_59

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024543535

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22003734


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Automation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnostic Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Ventricles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Image Analytics and Informatics, Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Image Analytics and Informatics, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Xiaoguang", 
        "id": "sg:person.0656702353.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656702353.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Image Analytics and Informatics, Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Image Analytics and Informatics, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jolly", 
        "givenName": "Marie-Pierre", 
        "id": "sg:person.0614041027.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614041027.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Image Analytics and Informatics, Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Image Analytics and Informatics, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "Bogdan", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Healthcare Sector, H IM MR PLM-AW CARD, Siemens AG, Erlangan, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Healthcare Sector, H IM MR PLM-AW CARD, Siemens AG, Erlangan, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayes", 
        "givenName": "Carmel", 
        "id": "sg:person.01053262263.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053262263.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Healthcare Sector, H IM MR PLM-AW CARD, Siemens AG, Erlangan, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Healthcare Sector, H IM MR PLM-AW CARD, Siemens AG, Erlangan, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Speier", 
        "givenName": "Peter", 
        "id": "sg:person.0746673731.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746673731.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Healthcare Sector, H IM MR PLM-AW CARD, Siemens AG, Erlangan, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Healthcare Sector, H IM MR PLM-AW CARD, Siemens AG, Erlangan, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "Michaela", 
        "id": "sg:person.01366540300.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366540300.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Medical Solutions USA, Chicago, IL, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Siemens Medical Solutions USA, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bi", 
        "givenName": "Xiaoming", 
        "id": "sg:person.01066244563.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Medical Solutions Canada, Winnipeg, MB, Canada", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Siemens Medical Solutions Canada, Winnipeg, MB, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kroeker", 
        "givenName": "Randall", 
        "id": "sg:person.0711373147.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711373147.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Image Analytics and Informatics, Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Image Analytics and Informatics, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health, Bethesda, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.94365.3d", 
          "name": [
            "National Institutes of Health, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kellman", 
        "givenName": "Peter", 
        "id": "sg:person.01342204374.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342204374.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Healthcare Sector, H IM MR PLM-AW CARD, Siemens AG, Erlangan, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Healthcare Sector, H IM MR PLM-AW CARD, Siemens AG, Erlangan, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mueller", 
        "givenName": "Edgar", 
        "id": "sg:person.014732375471.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014732375471.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Healthcare Sector, H IM MR PLM-AW CARD, Siemens AG, Erlangan, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Healthcare Sector, H IM MR PLM-AW CARD, Siemens AG, Erlangan, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guehring", 
        "givenName": "Jens", 
        "id": "sg:person.0776402627.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776402627.05"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "Conventional cardiac MRI acquisition involves a multi-step approach, requiring a few double-oblique localizers in order to locate the heart and prescribe long- and short-axis views of the heart. This approach is operator-dependent and time-consuming. We propose a new approach to automating and accelerating the acquisition process to improve the clinical workflow. We capture a highly accelerated static 3D full-chest volume through parallel imaging within one breath-hold. The left ventricle is localized and segmented, including left ventricle outflow tract. A number of cardiac landmarks are then detected to anchor the cardiac chambers and calculate standard 2-, 3-, and 4-chamber long-axis views along with a short-axis stack. Learning-based algorithms are applied to anatomy segmentation and anchor detection. The proposed algorithm is evaluated on 173 localizer acquisitions. The entire view planning is fully automatic and takes less than 10 seconds in our experiments.", 
    "editor": [
      {
        "familyName": "Fichtinger", 
        "givenName": "Gabor", 
        "type": "Person"
      }, 
      {
        "familyName": "Martel", 
        "givenName": "Anne", 
        "type": "Person"
      }, 
      {
        "familyName": "Peters", 
        "givenName": "Terry", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-23626-6_59", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-23625-9", 
        "978-3-642-23626-6"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2011", 
      "type": "Book"
    }, 
    "keywords": [
      "View Planning", 
      "learning-based algorithm", 
      "anchor detection", 
      "anatomy segmentation", 
      "cardiac landmarks", 
      "short-axis stack", 
      "MRI acquisition", 
      "clinical workflow", 
      "acquisition process", 
      "multi-step approach", 
      "algorithm", 
      "parallel imaging", 
      "new approach", 
      "segmentation", 
      "workflow", 
      "planning", 
      "acquisition", 
      "localizer", 
      "landmarks", 
      "stack", 
      "view", 
      "detection", 
      "seconds", 
      "order", 
      "experiments", 
      "number", 
      "process", 
      "cardiac chambers", 
      "imaging", 
      "short-axis view", 
      "volume", 
      "long-axis view", 
      "ventricle outflow tract", 
      "left ventricle", 
      "heart", 
      "ventricle", 
      "outflow tract", 
      "chamber", 
      "tract", 
      "approach", 
      "Conventional cardiac MRI acquisition", 
      "cardiac MRI acquisition", 
      "double-oblique localizers", 
      "static 3D full-chest volume", 
      "full-chest volume", 
      "localizer acquisitions", 
      "entire view planning", 
      "Automatic View Planning"
    ], 
    "name": "Automatic View Planning for Cardiac MRI Acquisition", 
    "pagination": "479-486", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024543535"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-23626-6_59"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22003734"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-23626-6_59", 
      "https://app.dimensions.ai/details/publication/pub.1024543535"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_199.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-23626-6_59"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23626-6_59'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23626-6_59'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23626-6_59'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23626-6_59'


 

This table displays all metadata directly associated to this object as RDF triples.

254 TRIPLES      23 PREDICATES      86 URIs      79 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-23626-6_59 schema:about N118e51467b324f06a6d5a5e43b1c8d3d
2 N2290b0e8288e4df1a520134544185b29
3 N45a4777a8fbd4a1fa34f4f5a83e1f083
4 N4b82d48b93704200b7c45244418173aa
5 N6de7be143d934ac6b47a5790f06268c9
6 N8027a4c01db241c391a1a8352e2fc3c6
7 N8f46dc809e54413bb43d011d45e94de9
8 Nb991fb404b1141498f380b0bf0adbb70
9 Ncf9190da8cb348979e2090c7d7b9c5bf
10 Ne0096cff412745fd9ea5775c31beb85c
11 Ned355e49f2a74de191d9a7755e412664
12 anzsrc-for:08
13 anzsrc-for:0801
14 schema:author N188e5105d7ea42a99f3221d13c4344e7
15 schema:datePublished 2011
16 schema:datePublishedReg 2011-01-01
17 schema:description Conventional cardiac MRI acquisition involves a multi-step approach, requiring a few double-oblique localizers in order to locate the heart and prescribe long- and short-axis views of the heart. This approach is operator-dependent and time-consuming. We propose a new approach to automating and accelerating the acquisition process to improve the clinical workflow. We capture a highly accelerated static 3D full-chest volume through parallel imaging within one breath-hold. The left ventricle is localized and segmented, including left ventricle outflow tract. A number of cardiac landmarks are then detected to anchor the cardiac chambers and calculate standard 2-, 3-, and 4-chamber long-axis views along with a short-axis stack. Learning-based algorithms are applied to anatomy segmentation and anchor detection. The proposed algorithm is evaluated on 173 localizer acquisitions. The entire view planning is fully automatic and takes less than 10 seconds in our experiments.
18 schema:editor N864c0da5480e407c88083ba135cce9c4
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf N15bf1a74f9c14477bfcd0bbb446b037b
23 schema:keywords Automatic View Planning
24 Conventional cardiac MRI acquisition
25 MRI acquisition
26 View Planning
27 acquisition
28 acquisition process
29 algorithm
30 anatomy segmentation
31 anchor detection
32 approach
33 cardiac MRI acquisition
34 cardiac chambers
35 cardiac landmarks
36 chamber
37 clinical workflow
38 detection
39 double-oblique localizers
40 entire view planning
41 experiments
42 full-chest volume
43 heart
44 imaging
45 landmarks
46 learning-based algorithm
47 left ventricle
48 localizer
49 localizer acquisitions
50 long-axis view
51 multi-step approach
52 new approach
53 number
54 order
55 outflow tract
56 parallel imaging
57 planning
58 process
59 seconds
60 segmentation
61 short-axis stack
62 short-axis view
63 stack
64 static 3D full-chest volume
65 tract
66 ventricle
67 ventricle outflow tract
68 view
69 volume
70 workflow
71 schema:name Automatic View Planning for Cardiac MRI Acquisition
72 schema:pagination 479-486
73 schema:productId N8a4c507a23ba4019b92d8491bdf22f1d
74 N8d1cabadb5e14376821b1dc94caa9019
75 Nf1a7d0ce4b3f4eaba722102eeddda4d5
76 schema:publisher N11a7f0092d7a482fa9ef715faf9612b9
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024543535
78 https://doi.org/10.1007/978-3-642-23626-6_59
79 schema:sdDatePublished 2022-01-01T19:11
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher N1add42ef0e214c2ba2ebfea6c40ce7a3
82 schema:url https://doi.org/10.1007/978-3-642-23626-6_59
83 sgo:license sg:explorer/license/
84 sgo:sdDataset chapters
85 rdf:type schema:Chapter
86 N118e51467b324f06a6d5a5e43b1c8d3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Heart Ventricles
88 rdf:type schema:DefinedTerm
89 N11a7f0092d7a482fa9ef715faf9612b9 schema:name Springer Nature
90 rdf:type schema:Organisation
91 N15bf1a74f9c14477bfcd0bbb446b037b schema:isbn 978-3-642-23625-9
92 978-3-642-23626-6
93 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2011
94 rdf:type schema:Book
95 N188e5105d7ea42a99f3221d13c4344e7 rdf:first sg:person.0656702353.18
96 rdf:rest N45790b3019854924948b38627c84dfa1
97 N1add42ef0e214c2ba2ebfea6c40ce7a3 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N2290b0e8288e4df1a520134544185b29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Pattern Recognition, Automated
101 rdf:type schema:DefinedTerm
102 N25f9e40cb85c4d8fa0cc134225e19be4 rdf:first sg:person.0703547214.37
103 rdf:rest Nfa8f1e3fdc8b44df98ee7688e1076a0b
104 N274bece22bc64ecc9c8d2dc5ec332ae9 rdf:first sg:person.01066111014.77
105 rdf:rest N5a09177da40d47a7a6087f923b1cc576
106 N2d0213d444454b789ac00ee39b3e96c7 schema:familyName Fichtinger
107 schema:givenName Gabor
108 rdf:type schema:Person
109 N3f61338ef48148e3aaf98b50ec92213c rdf:first N658e8e25d4284a7d8b1831f62e80f472
110 rdf:rest N5a4aa07e34874fe7b331d48330697195
111 N45790b3019854924948b38627c84dfa1 rdf:first sg:person.0614041027.22
112 rdf:rest N25f9e40cb85c4d8fa0cc134225e19be4
113 N45a4777a8fbd4a1fa34f4f5a83e1f083 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Heart
115 rdf:type schema:DefinedTerm
116 N4b82d48b93704200b7c45244418173aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Humans
118 rdf:type schema:DefinedTerm
119 N581a556906ae4b98bad87d597a84417e schema:familyName Peters
120 schema:givenName Terry
121 rdf:type schema:Person
122 N5a09177da40d47a7a6087f923b1cc576 rdf:first sg:person.01342204374.43
123 rdf:rest Nae7ec25294d14754845f314867a10174
124 N5a4aa07e34874fe7b331d48330697195 rdf:first N581a556906ae4b98bad87d597a84417e
125 rdf:rest rdf:nil
126 N658e8e25d4284a7d8b1831f62e80f472 schema:familyName Martel
127 schema:givenName Anne
128 rdf:type schema:Person
129 N6b24a7045a214bfbb9450f8e5faa622f rdf:first sg:person.0746673731.07
130 rdf:rest Nb51073cd6c05447a8322e51278b9ec80
131 N6de7be143d934ac6b47a5790f06268c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Imaging, Three-Dimensional
133 rdf:type schema:DefinedTerm
134 N8027a4c01db241c391a1a8352e2fc3c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Algorithms
136 rdf:type schema:DefinedTerm
137 N864c0da5480e407c88083ba135cce9c4 rdf:first N2d0213d444454b789ac00ee39b3e96c7
138 rdf:rest N3f61338ef48148e3aaf98b50ec92213c
139 N8a4c507a23ba4019b92d8491bdf22f1d schema:name dimensions_id
140 schema:value pub.1024543535
141 rdf:type schema:PropertyValue
142 N8d1cabadb5e14376821b1dc94caa9019 schema:name doi
143 schema:value 10.1007/978-3-642-23626-6_59
144 rdf:type schema:PropertyValue
145 N8f46dc809e54413bb43d011d45e94de9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Myocardium
147 rdf:type schema:DefinedTerm
148 Na5b11313749f423885d7ee2c464998dc rdf:first sg:person.0776402627.05
149 rdf:rest rdf:nil
150 Nae7ec25294d14754845f314867a10174 rdf:first sg:person.014732375471.17
151 rdf:rest Na5b11313749f423885d7ee2c464998dc
152 Nb51073cd6c05447a8322e51278b9ec80 rdf:first sg:person.01366540300.16
153 rdf:rest Ne89b0c13a700442496907c21d6cbfb60
154 Nb991fb404b1141498f380b0bf0adbb70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Automation
156 rdf:type schema:DefinedTerm
157 Ncf9190da8cb348979e2090c7d7b9c5bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Models, Statistical
159 rdf:type schema:DefinedTerm
160 Ne0096cff412745fd9ea5775c31beb85c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Magnetic Resonance Imaging
162 rdf:type schema:DefinedTerm
163 Ne89b0c13a700442496907c21d6cbfb60 rdf:first sg:person.01066244563.44
164 rdf:rest Nfafd9ed6f6ee4b9cad145b810392bfec
165 Ned355e49f2a74de191d9a7755e412664 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Diagnostic Imaging
167 rdf:type schema:DefinedTerm
168 Nf1a7d0ce4b3f4eaba722102eeddda4d5 schema:name pubmed_id
169 schema:value 22003734
170 rdf:type schema:PropertyValue
171 Nfa8f1e3fdc8b44df98ee7688e1076a0b rdf:first sg:person.01053262263.05
172 rdf:rest N6b24a7045a214bfbb9450f8e5faa622f
173 Nfafd9ed6f6ee4b9cad145b810392bfec rdf:first sg:person.0711373147.97
174 rdf:rest N274bece22bc64ecc9c8d2dc5ec332ae9
175 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
176 schema:name Information and Computing Sciences
177 rdf:type schema:DefinedTerm
178 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
179 schema:name Artificial Intelligence and Image Processing
180 rdf:type schema:DefinedTerm
181 sg:person.01053262263.05 schema:affiliation grid-institutes:grid.5406.7
182 schema:familyName Hayes
183 schema:givenName Carmel
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053262263.05
185 rdf:type schema:Person
186 sg:person.01066111014.77 schema:affiliation grid-institutes:grid.419233.e
187 schema:familyName Comaniciu
188 schema:givenName Dorin
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
190 rdf:type schema:Person
191 sg:person.01066244563.44 schema:affiliation grid-institutes:None
192 schema:familyName Bi
193 schema:givenName Xiaoming
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44
195 rdf:type schema:Person
196 sg:person.01342204374.43 schema:affiliation grid-institutes:grid.94365.3d
197 schema:familyName Kellman
198 schema:givenName Peter
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342204374.43
200 rdf:type schema:Person
201 sg:person.01366540300.16 schema:affiliation grid-institutes:grid.5406.7
202 schema:familyName Schmidt
203 schema:givenName Michaela
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366540300.16
205 rdf:type schema:Person
206 sg:person.014732375471.17 schema:affiliation grid-institutes:grid.5406.7
207 schema:familyName Mueller
208 schema:givenName Edgar
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014732375471.17
210 rdf:type schema:Person
211 sg:person.0614041027.22 schema:affiliation grid-institutes:grid.419233.e
212 schema:familyName Jolly
213 schema:givenName Marie-Pierre
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614041027.22
215 rdf:type schema:Person
216 sg:person.0656702353.18 schema:affiliation grid-institutes:grid.419233.e
217 schema:familyName Lu
218 schema:givenName Xiaoguang
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656702353.18
220 rdf:type schema:Person
221 sg:person.0703547214.37 schema:affiliation grid-institutes:grid.419233.e
222 schema:familyName Georgescu
223 schema:givenName Bogdan
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
225 rdf:type schema:Person
226 sg:person.0711373147.97 schema:affiliation grid-institutes:None
227 schema:familyName Kroeker
228 schema:givenName Randall
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711373147.97
230 rdf:type schema:Person
231 sg:person.0746673731.07 schema:affiliation grid-institutes:grid.5406.7
232 schema:familyName Speier
233 schema:givenName Peter
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746673731.07
235 rdf:type schema:Person
236 sg:person.0776402627.05 schema:affiliation grid-institutes:grid.5406.7
237 schema:familyName Guehring
238 schema:givenName Jens
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776402627.05
240 rdf:type schema:Person
241 grid-institutes:None schema:alternateName Siemens Medical Solutions Canada, Winnipeg, MB, Canada
242 Siemens Medical Solutions USA, Chicago, IL, USA
243 schema:name Siemens Medical Solutions Canada, Winnipeg, MB, Canada
244 Siemens Medical Solutions USA, Chicago, IL, USA
245 rdf:type schema:Organization
246 grid-institutes:grid.419233.e schema:alternateName Image Analytics and Informatics, Siemens Corporate Research, Princeton, NJ, USA
247 schema:name Image Analytics and Informatics, Siemens Corporate Research, Princeton, NJ, USA
248 rdf:type schema:Organization
249 grid-institutes:grid.5406.7 schema:alternateName Healthcare Sector, H IM MR PLM-AW CARD, Siemens AG, Erlangan, Germany
250 schema:name Healthcare Sector, H IM MR PLM-AW CARD, Siemens AG, Erlangan, Germany
251 rdf:type schema:Organization
252 grid-institutes:grid.94365.3d schema:alternateName National Institutes of Health, Bethesda, MD, USA
253 schema:name National Institutes of Health, Bethesda, MD, USA
254 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...