Robust and Stable Small-World Topology of Brain Intrinsic Organization during Pre- and Post-Task Resting States View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Zhijiang Wang , Jiming Liu , Ning Zhong , Yulin Qin , Haiyan Zhou , Kuncheng Li

ABSTRACT

Brain functional network studies have demonstrated the small-world topology as the nature of large-scale spontaneous brain activity. Studies have also revealed that the temporal coherence of spontaneous activity could be reshaped during task-dependent (or post-task) resting states within local spatial patterns such as task-related and the default-mode networks. However, to our best knowledge, it is still a lack of rigorous investigations that whether the small-world topology of spontaneous intrinsic organization remains robust and stable during different resting states. To address the problem, we recorded blood oxygen level-dependent (BOLD) signals from two rests (namely, pre- and post-task resting states) before and after a simple semantic-matching task, and investigated the preceding task influences on the topology of the large-scale spontaneous intrinsic organization during the post-task resting state. The major findings are that the small-world configuration of spontaneous intrinsic organization remains robust and stable during resting states regardless of preceding task influences. More... »

PAGES

136-147

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-23605-1_16

DOI

http://dx.doi.org/10.1007/978-3-642-23605-1_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027008377


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beijing Municipal Lab of Brain Informatics, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "International WIC Institute, Beijing University of Technology, China", 
            "Beijing Municipal Lab of Brain Informatics, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhijiang", 
        "id": "sg:person.01072234467.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072234467.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of Computer Science, Hong Kong Baptist University, China", 
          "id": "http://www.grid.ac/institutes/grid.221309.b", 
          "name": [
            "International WIC Institute, Beijing University of Technology, China", 
            "Beijing Municipal Lab of Brain Informatics, China", 
            "Dept. of Computer Science, Hong Kong Baptist University, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jiming", 
        "id": "sg:person.0756017611.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756017611.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of Life Science and Informatics, Maebashi Institute of Technology, Japan", 
          "id": "http://www.grid.ac/institutes/grid.444244.6", 
          "name": [
            "International WIC Institute, Beijing University of Technology, China", 
            "Beijing Municipal Lab of Brain Informatics, China", 
            "Dept. of Life Science and Informatics, Maebashi Institute of Technology, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhong", 
        "givenName": "Ning", 
        "id": "sg:person.012247427067.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012247427067.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of Psychology, Carnegie Mellon University, USA", 
          "id": "http://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "International WIC Institute, Beijing University of Technology, China", 
            "Beijing Municipal Lab of Brain Informatics, China", 
            "Dept. of Psychology, Carnegie Mellon University, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qin", 
        "givenName": "Yulin", 
        "id": "sg:person.01255045237.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255045237.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Municipal Lab of Brain Informatics, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "International WIC Institute, Beijing University of Technology, China", 
            "Beijing Municipal Lab of Brain Informatics, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Haiyan", 
        "id": "sg:person.013626462735.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626462735.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Municipal Lab of Brain Informatics, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Dept. of Radiology, Xuanwu Hospital, Capital Medical University, China", 
            "Beijing Municipal Lab of Brain Informatics, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Kuncheng", 
        "id": "sg:person.01326527402.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "Brain functional network studies have demonstrated the small-world topology as the nature of large-scale spontaneous brain activity. Studies have also revealed that the temporal coherence of spontaneous activity could be reshaped during task-dependent (or post-task) resting states within local spatial patterns such as task-related and the default-mode networks. However, to our best knowledge, it is still a lack of rigorous investigations that whether the small-world topology of spontaneous intrinsic organization remains robust and stable during different resting states. To address the problem, we recorded blood oxygen level-dependent (BOLD) signals from two rests (namely, pre- and post-task resting states) before and after a simple semantic-matching task, and investigated the preceding task influences on the topology of the large-scale spontaneous intrinsic organization during the post-task resting state. The major findings are that the small-world configuration of spontaneous intrinsic organization remains robust and stable during resting states regardless of preceding task influences.", 
    "editor": [
      {
        "familyName": "Hu", 
        "givenName": "Bin", 
        "type": "Person"
      }, 
      {
        "familyName": "Liu", 
        "givenName": "Jiming", 
        "type": "Person"
      }, 
      {
        "familyName": "Chen", 
        "givenName": "Lin", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhong", 
        "givenName": "Ning", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-23605-1_16", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-23604-4", 
        "978-3-642-23605-1"
      ], 
      "name": "Brain Informatics", 
      "type": "Book"
    }, 
    "keywords": [
      "intrinsic organization", 
      "blood oxygen level-dependent (BOLD) signal", 
      "spontaneous brain activity", 
      "level-dependent signal", 
      "brain's intrinsic organization", 
      "default mode network", 
      "spontaneous activity", 
      "resting states", 
      "brain activity", 
      "different resting states", 
      "small-world topology", 
      "small-world configuration", 
      "good knowledge", 
      "task influence", 
      "network studies", 
      "activity", 
      "rigorous investigation", 
      "study", 
      "pre", 
      "major findings", 
      "findings", 
      "rest", 
      "lack", 
      "patterns", 
      "organization", 
      "knowledge", 
      "investigation", 
      "influence", 
      "state", 
      "local spatial patterns", 
      "task", 
      "signals", 
      "nature", 
      "problem", 
      "coherence", 
      "spatial patterns", 
      "temporal coherence", 
      "world topology", 
      "network", 
      "configuration", 
      "topology"
    ], 
    "name": "Robust and Stable Small-World Topology of Brain Intrinsic Organization during Pre- and Post-Task Resting States", 
    "pagination": "136-147", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027008377"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-23605-1_16"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-23605-1_16", 
      "https://app.dimensions.ai/details/publication/pub.1027008377"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-11-24T21:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/chapter/chapter_427.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-23605-1_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23605-1_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23605-1_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23605-1_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23605-1_16'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      22 PREDICATES      66 URIs      59 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-23605-1_16 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N159a81a757924322a2cd7303ff3ed025
4 schema:datePublished 2011
5 schema:datePublishedReg 2011-01-01
6 schema:description Brain functional network studies have demonstrated the small-world topology as the nature of large-scale spontaneous brain activity. Studies have also revealed that the temporal coherence of spontaneous activity could be reshaped during task-dependent (or post-task) resting states within local spatial patterns such as task-related and the default-mode networks. However, to our best knowledge, it is still a lack of rigorous investigations that whether the small-world topology of spontaneous intrinsic organization remains robust and stable during different resting states. To address the problem, we recorded blood oxygen level-dependent (BOLD) signals from two rests (namely, pre- and post-task resting states) before and after a simple semantic-matching task, and investigated the preceding task influences on the topology of the large-scale spontaneous intrinsic organization during the post-task resting state. The major findings are that the small-world configuration of spontaneous intrinsic organization remains robust and stable during resting states regardless of preceding task influences.
7 schema:editor N46a47e74a224475f8a28916d8e64bb6d
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nc756c20479414a1ba7773ece73869d85
11 schema:keywords activity
12 blood oxygen level-dependent (BOLD) signal
13 brain activity
14 brain's intrinsic organization
15 coherence
16 configuration
17 default mode network
18 different resting states
19 findings
20 good knowledge
21 influence
22 intrinsic organization
23 investigation
24 knowledge
25 lack
26 level-dependent signal
27 local spatial patterns
28 major findings
29 nature
30 network
31 network studies
32 organization
33 patterns
34 pre
35 problem
36 rest
37 resting states
38 rigorous investigation
39 signals
40 small-world configuration
41 small-world topology
42 spatial patterns
43 spontaneous activity
44 spontaneous brain activity
45 state
46 study
47 task
48 task influence
49 temporal coherence
50 topology
51 world topology
52 schema:name Robust and Stable Small-World Topology of Brain Intrinsic Organization during Pre- and Post-Task Resting States
53 schema:pagination 136-147
54 schema:productId N7ad607cda9594d6dab517f085c0a3a56
55 Ne47c5a30502a44fcbead32c7739b5bb6
56 schema:publisher Ne519757b980f468ab9480ee0770e629e
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027008377
58 https://doi.org/10.1007/978-3-642-23605-1_16
59 schema:sdDatePublished 2022-11-24T21:18
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N84ce022047d74b78a9e3e4b0f90198db
62 schema:url https://doi.org/10.1007/978-3-642-23605-1_16
63 sgo:license sg:explorer/license/
64 sgo:sdDataset chapters
65 rdf:type schema:Chapter
66 N098ca77ae2eb4782ae8cb3a56f48ca7a schema:familyName Chen
67 schema:givenName Lin
68 rdf:type schema:Person
69 N10b64d28838040c9958e82aecc6002e3 rdf:first sg:person.012247427067.95
70 rdf:rest N392cfd18a1b74ab184b786f74eb0c4b3
71 N159a81a757924322a2cd7303ff3ed025 rdf:first sg:person.01072234467.85
72 rdf:rest N731e185a4e2c4794845f83e225e9003d
73 N2189a4adfea048cdb809f7cfad1c8e72 schema:familyName Zhong
74 schema:givenName Ning
75 rdf:type schema:Person
76 N392cfd18a1b74ab184b786f74eb0c4b3 rdf:first sg:person.01255045237.08
77 rdf:rest Nfc8fc732482f4f60847a3c40689e3579
78 N3ca1eda69d1d41088997a95a5c9e6461 schema:familyName Hu
79 schema:givenName Bin
80 rdf:type schema:Person
81 N425d7ed95ba345a6a2406ca41f322c6c rdf:first N2189a4adfea048cdb809f7cfad1c8e72
82 rdf:rest rdf:nil
83 N46a47e74a224475f8a28916d8e64bb6d rdf:first N3ca1eda69d1d41088997a95a5c9e6461
84 rdf:rest N609c9463bd104b999dbb317010497d5e
85 N609c9463bd104b999dbb317010497d5e rdf:first Nfb9a2665ad164f9285dbc81bb1454472
86 rdf:rest N8084c62351ae4c6192fab4491568e303
87 N731e185a4e2c4794845f83e225e9003d rdf:first sg:person.0756017611.57
88 rdf:rest N10b64d28838040c9958e82aecc6002e3
89 N7ad607cda9594d6dab517f085c0a3a56 schema:name dimensions_id
90 schema:value pub.1027008377
91 rdf:type schema:PropertyValue
92 N8084c62351ae4c6192fab4491568e303 rdf:first N098ca77ae2eb4782ae8cb3a56f48ca7a
93 rdf:rest N425d7ed95ba345a6a2406ca41f322c6c
94 N84ce022047d74b78a9e3e4b0f90198db schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 Nb7b697d0d3dc404086b8ef87157ec300 rdf:first sg:person.01326527402.59
97 rdf:rest rdf:nil
98 Nc756c20479414a1ba7773ece73869d85 schema:isbn 978-3-642-23604-4
99 978-3-642-23605-1
100 schema:name Brain Informatics
101 rdf:type schema:Book
102 Ne47c5a30502a44fcbead32c7739b5bb6 schema:name doi
103 schema:value 10.1007/978-3-642-23605-1_16
104 rdf:type schema:PropertyValue
105 Ne519757b980f468ab9480ee0770e629e schema:name Springer Nature
106 rdf:type schema:Organisation
107 Nfb9a2665ad164f9285dbc81bb1454472 schema:familyName Liu
108 schema:givenName Jiming
109 rdf:type schema:Person
110 Nfc8fc732482f4f60847a3c40689e3579 rdf:first sg:person.013626462735.05
111 rdf:rest Nb7b697d0d3dc404086b8ef87157ec300
112 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
113 schema:name Medical and Health Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
116 schema:name Neurosciences
117 rdf:type schema:DefinedTerm
118 sg:person.01072234467.85 schema:affiliation grid-institutes:None
119 schema:familyName Wang
120 schema:givenName Zhijiang
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072234467.85
122 rdf:type schema:Person
123 sg:person.012247427067.95 schema:affiliation grid-institutes:grid.444244.6
124 schema:familyName Zhong
125 schema:givenName Ning
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012247427067.95
127 rdf:type schema:Person
128 sg:person.01255045237.08 schema:affiliation grid-institutes:grid.147455.6
129 schema:familyName Qin
130 schema:givenName Yulin
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255045237.08
132 rdf:type schema:Person
133 sg:person.01326527402.59 schema:affiliation grid-institutes:None
134 schema:familyName Li
135 schema:givenName Kuncheng
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59
137 rdf:type schema:Person
138 sg:person.013626462735.05 schema:affiliation grid-institutes:None
139 schema:familyName Zhou
140 schema:givenName Haiyan
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626462735.05
142 rdf:type schema:Person
143 sg:person.0756017611.57 schema:affiliation grid-institutes:grid.221309.b
144 schema:familyName Liu
145 schema:givenName Jiming
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756017611.57
147 rdf:type schema:Person
148 grid-institutes:None schema:alternateName Beijing Municipal Lab of Brain Informatics, China
149 schema:name Beijing Municipal Lab of Brain Informatics, China
150 Dept. of Radiology, Xuanwu Hospital, Capital Medical University, China
151 International WIC Institute, Beijing University of Technology, China
152 rdf:type schema:Organization
153 grid-institutes:grid.147455.6 schema:alternateName Dept. of Psychology, Carnegie Mellon University, USA
154 schema:name Beijing Municipal Lab of Brain Informatics, China
155 Dept. of Psychology, Carnegie Mellon University, USA
156 International WIC Institute, Beijing University of Technology, China
157 rdf:type schema:Organization
158 grid-institutes:grid.221309.b schema:alternateName Dept. of Computer Science, Hong Kong Baptist University, China
159 schema:name Beijing Municipal Lab of Brain Informatics, China
160 Dept. of Computer Science, Hong Kong Baptist University, China
161 International WIC Institute, Beijing University of Technology, China
162 rdf:type schema:Organization
163 grid-institutes:grid.444244.6 schema:alternateName Dept. of Life Science and Informatics, Maebashi Institute of Technology, Japan
164 schema:name Beijing Municipal Lab of Brain Informatics, China
165 Dept. of Life Science and Informatics, Maebashi Institute of Technology, Japan
166 International WIC Institute, Beijing University of Technology, China
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...