Robust and Stable Small-World Topology of Brain Intrinsic Organization during Pre- and Post-Task Resting States View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Zhijiang Wang , Jiming Liu , Ning Zhong , Yulin Qin , Haiyan Zhou , Kuncheng Li

ABSTRACT

Brain functional network studies have demonstrated the small-world topology as the nature of large-scale spontaneous brain activity. Studies have also revealed that the temporal coherence of spontaneous activity could be reshaped during task-dependent (or post-task) resting states within local spatial patterns such as task-related and the default-mode networks. However, to our best knowledge, it is still a lack of rigorous investigations that whether the small-world topology of spontaneous intrinsic organization remains robust and stable during different resting states. To address the problem, we recorded blood oxygen level-dependent (BOLD) signals from two rests (namely, pre- and post-task resting states) before and after a simple semantic-matching task, and investigated the preceding task influences on the topology of the large-scale spontaneous intrinsic organization during the post-task resting state. The major findings are that the small-world configuration of spontaneous intrinsic organization remains robust and stable during resting states regardless of preceding task influences. More... »

PAGES

136-147

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-23605-1_16

DOI

http://dx.doi.org/10.1007/978-3-642-23605-1_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027008377


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beijing Municipal Lab of Brain Informatics, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "International WIC Institute, Beijing University of Technology, China", 
            "Beijing Municipal Lab of Brain Informatics, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhijiang", 
        "id": "sg:person.01072234467.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072234467.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of Computer Science, Hong Kong Baptist University, China", 
          "id": "http://www.grid.ac/institutes/grid.221309.b", 
          "name": [
            "International WIC Institute, Beijing University of Technology, China", 
            "Beijing Municipal Lab of Brain Informatics, China", 
            "Dept. of Computer Science, Hong Kong Baptist University, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jiming", 
        "id": "sg:person.0756017611.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756017611.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of Life Science and Informatics, Maebashi Institute of Technology, Japan", 
          "id": "http://www.grid.ac/institutes/grid.444244.6", 
          "name": [
            "International WIC Institute, Beijing University of Technology, China", 
            "Beijing Municipal Lab of Brain Informatics, China", 
            "Dept. of Life Science and Informatics, Maebashi Institute of Technology, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhong", 
        "givenName": "Ning", 
        "id": "sg:person.012247427067.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012247427067.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of Psychology, Carnegie Mellon University, USA", 
          "id": "http://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "International WIC Institute, Beijing University of Technology, China", 
            "Beijing Municipal Lab of Brain Informatics, China", 
            "Dept. of Psychology, Carnegie Mellon University, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qin", 
        "givenName": "Yulin", 
        "id": "sg:person.01255045237.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255045237.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Municipal Lab of Brain Informatics, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "International WIC Institute, Beijing University of Technology, China", 
            "Beijing Municipal Lab of Brain Informatics, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Haiyan", 
        "id": "sg:person.013626462735.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626462735.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Municipal Lab of Brain Informatics, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Dept. of Radiology, Xuanwu Hospital, Capital Medical University, China", 
            "Beijing Municipal Lab of Brain Informatics, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Kuncheng", 
        "id": "sg:person.01326527402.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "Brain functional network studies have demonstrated the small-world topology as the nature of large-scale spontaneous brain activity. Studies have also revealed that the temporal coherence of spontaneous activity could be reshaped during task-dependent (or post-task) resting states within local spatial patterns such as task-related and the default-mode networks. However, to our best knowledge, it is still a lack of rigorous investigations that whether the small-world topology of spontaneous intrinsic organization remains robust and stable during different resting states. To address the problem, we recorded blood oxygen level-dependent (BOLD) signals from two rests (namely, pre- and post-task resting states) before and after a simple semantic-matching task, and investigated the preceding task influences on the topology of the large-scale spontaneous intrinsic organization during the post-task resting state. The major findings are that the small-world configuration of spontaneous intrinsic organization remains robust and stable during resting states regardless of preceding task influences.", 
    "editor": [
      {
        "familyName": "Hu", 
        "givenName": "Bin", 
        "type": "Person"
      }, 
      {
        "familyName": "Liu", 
        "givenName": "Jiming", 
        "type": "Person"
      }, 
      {
        "familyName": "Chen", 
        "givenName": "Lin", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhong", 
        "givenName": "Ning", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-23605-1_16", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-23604-4", 
        "978-3-642-23605-1"
      ], 
      "name": "Brain Informatics", 
      "type": "Book"
    }, 
    "keywords": [
      "intrinsic organization", 
      "blood oxygen level-dependent (BOLD) signal", 
      "spontaneous brain activity", 
      "level-dependent signal", 
      "brain's intrinsic organization", 
      "default mode network", 
      "spontaneous activity", 
      "resting states", 
      "brain activity", 
      "different resting states", 
      "small-world topology", 
      "small-world configuration", 
      "good knowledge", 
      "task influence", 
      "network studies", 
      "activity", 
      "rigorous investigation", 
      "study", 
      "pre", 
      "major findings", 
      "findings", 
      "rest", 
      "lack", 
      "patterns", 
      "organization", 
      "knowledge", 
      "investigation", 
      "influence", 
      "state", 
      "local spatial patterns", 
      "task", 
      "signals", 
      "nature", 
      "problem", 
      "coherence", 
      "spatial patterns", 
      "temporal coherence", 
      "world topology", 
      "network", 
      "configuration", 
      "topology"
    ], 
    "name": "Robust and Stable Small-World Topology of Brain Intrinsic Organization during Pre- and Post-Task Resting States", 
    "pagination": "136-147", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027008377"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-23605-1_16"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-23605-1_16", 
      "https://app.dimensions.ai/details/publication/pub.1027008377"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T07:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_70.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-23605-1_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23605-1_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23605-1_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23605-1_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23605-1_16'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      22 PREDICATES      66 URIs      59 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-23605-1_16 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N02e695244ab447c48515bf29ac8c699f
4 schema:datePublished 2011
5 schema:datePublishedReg 2011-01-01
6 schema:description Brain functional network studies have demonstrated the small-world topology as the nature of large-scale spontaneous brain activity. Studies have also revealed that the temporal coherence of spontaneous activity could be reshaped during task-dependent (or post-task) resting states within local spatial patterns such as task-related and the default-mode networks. However, to our best knowledge, it is still a lack of rigorous investigations that whether the small-world topology of spontaneous intrinsic organization remains robust and stable during different resting states. To address the problem, we recorded blood oxygen level-dependent (BOLD) signals from two rests (namely, pre- and post-task resting states) before and after a simple semantic-matching task, and investigated the preceding task influences on the topology of the large-scale spontaneous intrinsic organization during the post-task resting state. The major findings are that the small-world configuration of spontaneous intrinsic organization remains robust and stable during resting states regardless of preceding task influences.
7 schema:editor N18d4c22b29724e7f9cb7b4e82078bfce
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N7d4d4f6902b04c9888365069f0d09e19
11 schema:keywords activity
12 blood oxygen level-dependent (BOLD) signal
13 brain activity
14 brain's intrinsic organization
15 coherence
16 configuration
17 default mode network
18 different resting states
19 findings
20 good knowledge
21 influence
22 intrinsic organization
23 investigation
24 knowledge
25 lack
26 level-dependent signal
27 local spatial patterns
28 major findings
29 nature
30 network
31 network studies
32 organization
33 patterns
34 pre
35 problem
36 rest
37 resting states
38 rigorous investigation
39 signals
40 small-world configuration
41 small-world topology
42 spatial patterns
43 spontaneous activity
44 spontaneous brain activity
45 state
46 study
47 task
48 task influence
49 temporal coherence
50 topology
51 world topology
52 schema:name Robust and Stable Small-World Topology of Brain Intrinsic Organization during Pre- and Post-Task Resting States
53 schema:pagination 136-147
54 schema:productId N1e1d735dad60458e84b782d27ab2c2d0
55 Nbb2603eb151543788c4771778a50b8fb
56 schema:publisher N97ff80b8b61249f0bfaa480dea282c14
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027008377
58 https://doi.org/10.1007/978-3-642-23605-1_16
59 schema:sdDatePublished 2022-10-01T07:00
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nfc4036252e6840d5a2df1a1b74154570
62 schema:url https://doi.org/10.1007/978-3-642-23605-1_16
63 sgo:license sg:explorer/license/
64 sgo:sdDataset chapters
65 rdf:type schema:Chapter
66 N02e695244ab447c48515bf29ac8c699f rdf:first sg:person.01072234467.85
67 rdf:rest N0a220eefc80e46c0a85bcbdb6e202156
68 N0a220eefc80e46c0a85bcbdb6e202156 rdf:first sg:person.0756017611.57
69 rdf:rest Nf89f774a91024e0696e11412613633a7
70 N18d4c22b29724e7f9cb7b4e82078bfce rdf:first N7a0df4eabcc7485996dc02a7a9dc3583
71 rdf:rest Na0108de2bd794dabad46b9270b693145
72 N1e1d735dad60458e84b782d27ab2c2d0 schema:name dimensions_id
73 schema:value pub.1027008377
74 rdf:type schema:PropertyValue
75 N20627a205f174995aec4e541ca464b47 schema:familyName Zhong
76 schema:givenName Ning
77 rdf:type schema:Person
78 N2829dce2b01d4feca5bd687df20f563c rdf:first N20627a205f174995aec4e541ca464b47
79 rdf:rest rdf:nil
80 N66e7de11a23d48b2af4ecf9d371e4160 schema:familyName Chen
81 schema:givenName Lin
82 rdf:type schema:Person
83 N71a8457c606a49a0a02c44d5e0540518 rdf:first N66e7de11a23d48b2af4ecf9d371e4160
84 rdf:rest N2829dce2b01d4feca5bd687df20f563c
85 N7a0df4eabcc7485996dc02a7a9dc3583 schema:familyName Hu
86 schema:givenName Bin
87 rdf:type schema:Person
88 N7d4d4f6902b04c9888365069f0d09e19 schema:isbn 978-3-642-23604-4
89 978-3-642-23605-1
90 schema:name Brain Informatics
91 rdf:type schema:Book
92 N97ff80b8b61249f0bfaa480dea282c14 schema:name Springer Nature
93 rdf:type schema:Organisation
94 N9e33d32632274245b614d345c8396c4a rdf:first sg:person.013626462735.05
95 rdf:rest Nbf3b2bc27e784e0fb53f011408e2c510
96 N9fc7782ec2ce47338567195372ee852f rdf:first sg:person.01255045237.08
97 rdf:rest N9e33d32632274245b614d345c8396c4a
98 Na0108de2bd794dabad46b9270b693145 rdf:first Nd8802881e67942fba5b8b1e57b8b681b
99 rdf:rest N71a8457c606a49a0a02c44d5e0540518
100 Nbb2603eb151543788c4771778a50b8fb schema:name doi
101 schema:value 10.1007/978-3-642-23605-1_16
102 rdf:type schema:PropertyValue
103 Nbf3b2bc27e784e0fb53f011408e2c510 rdf:first sg:person.01326527402.59
104 rdf:rest rdf:nil
105 Nd8802881e67942fba5b8b1e57b8b681b schema:familyName Liu
106 schema:givenName Jiming
107 rdf:type schema:Person
108 Nf89f774a91024e0696e11412613633a7 rdf:first sg:person.012247427067.95
109 rdf:rest N9fc7782ec2ce47338567195372ee852f
110 Nfc4036252e6840d5a2df1a1b74154570 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
113 schema:name Medical and Health Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
116 schema:name Neurosciences
117 rdf:type schema:DefinedTerm
118 sg:person.01072234467.85 schema:affiliation grid-institutes:None
119 schema:familyName Wang
120 schema:givenName Zhijiang
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072234467.85
122 rdf:type schema:Person
123 sg:person.012247427067.95 schema:affiliation grid-institutes:grid.444244.6
124 schema:familyName Zhong
125 schema:givenName Ning
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012247427067.95
127 rdf:type schema:Person
128 sg:person.01255045237.08 schema:affiliation grid-institutes:grid.147455.6
129 schema:familyName Qin
130 schema:givenName Yulin
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255045237.08
132 rdf:type schema:Person
133 sg:person.01326527402.59 schema:affiliation grid-institutes:None
134 schema:familyName Li
135 schema:givenName Kuncheng
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59
137 rdf:type schema:Person
138 sg:person.013626462735.05 schema:affiliation grid-institutes:None
139 schema:familyName Zhou
140 schema:givenName Haiyan
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626462735.05
142 rdf:type schema:Person
143 sg:person.0756017611.57 schema:affiliation grid-institutes:grid.221309.b
144 schema:familyName Liu
145 schema:givenName Jiming
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756017611.57
147 rdf:type schema:Person
148 grid-institutes:None schema:alternateName Beijing Municipal Lab of Brain Informatics, China
149 schema:name Beijing Municipal Lab of Brain Informatics, China
150 Dept. of Radiology, Xuanwu Hospital, Capital Medical University, China
151 International WIC Institute, Beijing University of Technology, China
152 rdf:type schema:Organization
153 grid-institutes:grid.147455.6 schema:alternateName Dept. of Psychology, Carnegie Mellon University, USA
154 schema:name Beijing Municipal Lab of Brain Informatics, China
155 Dept. of Psychology, Carnegie Mellon University, USA
156 International WIC Institute, Beijing University of Technology, China
157 rdf:type schema:Organization
158 grid-institutes:grid.221309.b schema:alternateName Dept. of Computer Science, Hong Kong Baptist University, China
159 schema:name Beijing Municipal Lab of Brain Informatics, China
160 Dept. of Computer Science, Hong Kong Baptist University, China
161 International WIC Institute, Beijing University of Technology, China
162 rdf:type schema:Organization
163 grid-institutes:grid.444244.6 schema:alternateName Dept. of Life Science and Informatics, Maebashi Institute of Technology, Japan
164 schema:name Beijing Municipal Lab of Brain Informatics, China
165 Dept. of Life Science and Informatics, Maebashi Institute of Technology, Japan
166 International WIC Institute, Beijing University of Technology, China
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...