Robust and Stable Small-World Topology of Brain Intrinsic Organization during Pre- and Post-Task Resting States View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Zhijiang Wang , Jiming Liu , Ning Zhong , Yulin Qin , Haiyan Zhou , Kuncheng Li

ABSTRACT

Brain functional network studies have demonstrated the small-world topology as the nature of large-scale spontaneous brain activity. Studies have also revealed that the temporal coherence of spontaneous activity could be reshaped during task-dependent (or post-task) resting states within local spatial patterns such as task-related and the default-mode networks. However, to our best knowledge, it is still a lack of rigorous investigations that whether the small-world topology of spontaneous intrinsic organization remains robust and stable during different resting states. To address the problem, we recorded blood oxygen level-dependent (BOLD) signals from two rests (namely, pre- and post-task resting states) before and after a simple semantic-matching task, and investigated the preceding task influences on the topology of the large-scale spontaneous intrinsic organization during the post-task resting state. The major findings are that the small-world configuration of spontaneous intrinsic organization remains robust and stable during resting states regardless of preceding task influences. More... »

PAGES

136-147

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-23605-1_16

DOI

http://dx.doi.org/10.1007/978-3-642-23605-1_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027008377


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beijing University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "International WIC Institute, Beijing University of Technology, China", 
            "Beijing Municipal Lab of Brain Informatics, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhijiang", 
        "id": "sg:person.01072234467.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072234467.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hong Kong Baptist University", 
          "id": "https://www.grid.ac/institutes/grid.221309.b", 
          "name": [
            "International WIC Institute, Beijing University of Technology, China", 
            "Beijing Municipal Lab of Brain Informatics, China", 
            "Dept. of Computer Science, Hong Kong Baptist University, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jiming", 
        "id": "sg:person.0756017611.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756017611.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Maebashi Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.444244.6", 
          "name": [
            "International WIC Institute, Beijing University of Technology, China", 
            "Beijing Municipal Lab of Brain Informatics, China", 
            "Dept. of Life Science and Informatics, Maebashi Institute of Technology, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhong", 
        "givenName": "Ning", 
        "id": "sg:person.012247427067.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012247427067.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carnegie Mellon University", 
          "id": "https://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "International WIC Institute, Beijing University of Technology, China", 
            "Beijing Municipal Lab of Brain Informatics, China", 
            "Dept. of Psychology, Carnegie Mellon University, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qin", 
        "givenName": "Yulin", 
        "id": "sg:person.01255045237.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255045237.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "International WIC Institute, Beijing University of Technology, China", 
            "Beijing Municipal Lab of Brain Informatics, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Haiyan", 
        "id": "sg:person.013626462735.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626462735.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Dept. of Radiology, Xuanwu Hospital, Capital Medical University, China", 
            "Beijing Municipal Lab of Brain Informatics, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Kuncheng", 
        "id": "sg:person.01326527402.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1523/jneurosci.3874-05.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003819788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.3874-05.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003819788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0504136102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004124686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.20069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004413150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn2575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004953014", 
          "https://doi.org/10.1038/nrn2575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.198701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005667063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.198701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005667063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.018102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006741210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.018102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006741210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.2001.0978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008623590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1364-6613(98)01259-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010278161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.2000.0551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012661979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2007.10.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015790317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2003-00095-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017530513", 
          "https://doi.org/10.1140/epjb/e2003-00095-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/335311a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017820996", 
          "https://doi.org/10.1038/335311a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.1998.0336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018798021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neulet.2006.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019324536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15314-3_41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020464135", 
          "https://doi.org/10.1007/978-3-642-15314-3_41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15314-3_41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020464135", 
          "https://doi.org/10.1007/978-3-642-15314-3_41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0000597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021336259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022342218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022342218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.2005.3354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023018903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2009.04.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025073143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/10.2.127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027697690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1073858406293182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028082387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1073858406293182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028082387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.298.5594.824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033238539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2008.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037805849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neulet.2003.10.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039379294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.neuro.29.051605.112819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040095734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0030017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040127483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0030017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040127483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.2000.0552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042329992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0902455106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044539623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tics.2004.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044882727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1385/ni:2:2:145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045648324", 
          "https://doi.org/10.1385/ni:2:2:145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0606005103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046475978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1065103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048235090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhi016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049616524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.2005.1645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049791651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn2201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053109894", 
          "https://doi.org/10.1038/nrn2201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s003614450342480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s003614450342480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2010.5596646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095665495"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "Brain functional network studies have demonstrated the small-world topology as the nature of large-scale spontaneous brain activity. Studies have also revealed that the temporal coherence of spontaneous activity could be reshaped during task-dependent (or post-task) resting states within local spatial patterns such as task-related and the default-mode networks. However, to our best knowledge, it is still a lack of rigorous investigations that whether the small-world topology of spontaneous intrinsic organization remains robust and stable during different resting states. To address the problem, we recorded blood oxygen level-dependent (BOLD) signals from two rests (namely, pre- and post-task resting states) before and after a simple semantic-matching task, and investigated the preceding task influences on the topology of the large-scale spontaneous intrinsic organization during the post-task resting state. The major findings are that the small-world configuration of spontaneous intrinsic organization remains robust and stable during resting states regardless of preceding task influences.", 
    "editor": [
      {
        "familyName": "Hu", 
        "givenName": "Bin", 
        "type": "Person"
      }, 
      {
        "familyName": "Liu", 
        "givenName": "Jiming", 
        "type": "Person"
      }, 
      {
        "familyName": "Chen", 
        "givenName": "Lin", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhong", 
        "givenName": "Ning", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-23605-1_16", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-23604-4", 
        "978-3-642-23605-1"
      ], 
      "name": "Brain Informatics", 
      "type": "Book"
    }, 
    "name": "Robust and Stable Small-World Topology of Brain Intrinsic Organization during Pre- and Post-Task Resting States", 
    "pagination": "136-147", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027008377"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-23605-1_16"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "80a9a5c53acaba1ee24e8dd604b00693060edaed4f03fa58f941b0ccfd6b67f2"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-23605-1_16", 
      "https://app.dimensions.ai/details/publication/pub.1027008377"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130792_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-23605-1_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23605-1_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23605-1_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23605-1_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23605-1_16'


 

This table displays all metadata directly associated to this object as RDF triples.

256 TRIPLES      23 PREDICATES      65 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-23605-1_16 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N25046da2f92e406caee41e15c8d4b634
4 schema:citation sg:pub.10.1007/978-3-642-15314-3_41
5 sg:pub.10.1038/30918
6 sg:pub.10.1038/335311a0
7 sg:pub.10.1038/nrn2201
8 sg:pub.10.1038/nrn2575
9 sg:pub.10.1140/epjb/e2003-00095-5
10 sg:pub.10.1385/ni:2:2:145
11 https://doi.org/10.1002/hbm.20069
12 https://doi.org/10.1006/nimg.1998.0336
13 https://doi.org/10.1006/nimg.2001.0978
14 https://doi.org/10.1016/j.cub.2009.04.028
15 https://doi.org/10.1016/j.neulet.2003.10.063
16 https://doi.org/10.1016/j.neulet.2006.04.006
17 https://doi.org/10.1016/j.neuroimage.2007.10.060
18 https://doi.org/10.1016/j.neuroimage.2008.08.010
19 https://doi.org/10.1016/j.neuroimage.2009.10.003
20 https://doi.org/10.1016/j.tics.2004.07.008
21 https://doi.org/10.1016/s1364-6613(98)01259-5
22 https://doi.org/10.1073/pnas.0504136102
23 https://doi.org/10.1073/pnas.0606005103
24 https://doi.org/10.1073/pnas.0902455106
25 https://doi.org/10.1093/cercor/10.2.127
26 https://doi.org/10.1093/cercor/bhi016
27 https://doi.org/10.1098/rspb.2005.3354
28 https://doi.org/10.1098/rstb.2000.0551
29 https://doi.org/10.1098/rstb.2000.0552
30 https://doi.org/10.1098/rstb.2005.1645
31 https://doi.org/10.1103/physrevlett.87.198701
32 https://doi.org/10.1103/physrevlett.94.018102
33 https://doi.org/10.1109/ijcnn.2010.5596646
34 https://doi.org/10.1126/science.1065103
35 https://doi.org/10.1126/science.298.5594.824
36 https://doi.org/10.1137/s003614450342480
37 https://doi.org/10.1146/annurev.neuro.29.051605.112819
38 https://doi.org/10.1177/1073858406293182
39 https://doi.org/10.1371/journal.pcbi.0030017
40 https://doi.org/10.1371/journal.pone.0000597
41 https://doi.org/10.1523/jneurosci.3874-05.2006
42 schema:datePublished 2011
43 schema:datePublishedReg 2011-01-01
44 schema:description Brain functional network studies have demonstrated the small-world topology as the nature of large-scale spontaneous brain activity. Studies have also revealed that the temporal coherence of spontaneous activity could be reshaped during task-dependent (or post-task) resting states within local spatial patterns such as task-related and the default-mode networks. However, to our best knowledge, it is still a lack of rigorous investigations that whether the small-world topology of spontaneous intrinsic organization remains robust and stable during different resting states. To address the problem, we recorded blood oxygen level-dependent (BOLD) signals from two rests (namely, pre- and post-task resting states) before and after a simple semantic-matching task, and investigated the preceding task influences on the topology of the large-scale spontaneous intrinsic organization during the post-task resting state. The major findings are that the small-world configuration of spontaneous intrinsic organization remains robust and stable during resting states regardless of preceding task influences.
45 schema:editor Nfc61460d34d74762a69ad8a4e97eb156
46 schema:genre chapter
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf Ne6ecec979d0a4f2f8febe5791cba3f6f
50 schema:name Robust and Stable Small-World Topology of Brain Intrinsic Organization during Pre- and Post-Task Resting States
51 schema:pagination 136-147
52 schema:productId N1fb8e10241bf43c3bcdaf3dbc4ae13aa
53 N5d41d6562fe64e0cb5c2bd12d78c946f
54 N9cf3d1d104e743ce82112634372e6b5c
55 schema:publisher Neb96a4ca021c492ba254c12966712a4a
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027008377
57 https://doi.org/10.1007/978-3-642-23605-1_16
58 schema:sdDatePublished 2019-04-16T09:09
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N4a529481ba5e4a6782291910e39f156f
61 schema:url https://link.springer.com/10.1007%2F978-3-642-23605-1_16
62 sgo:license sg:explorer/license/
63 sgo:sdDataset chapters
64 rdf:type schema:Chapter
65 N1a4bcdb5950d4f00abcced443c4603b3 rdf:first sg:person.0756017611.57
66 rdf:rest N92f7f4f33fd2431092fe321475f18f14
67 N1fb8e10241bf43c3bcdaf3dbc4ae13aa schema:name readcube_id
68 schema:value 80a9a5c53acaba1ee24e8dd604b00693060edaed4f03fa58f941b0ccfd6b67f2
69 rdf:type schema:PropertyValue
70 N25046da2f92e406caee41e15c8d4b634 rdf:first sg:person.01072234467.85
71 rdf:rest N1a4bcdb5950d4f00abcced443c4603b3
72 N27d9cc8e791a42a5a4843254cfcaf1b9 rdf:first N6f453fd159ab4e9398855bfa73b41e45
73 rdf:rest Ndce354d6aa4e4a6ea16287e8fdc88432
74 N4a529481ba5e4a6782291910e39f156f schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N5722cd32ec6e4bed8ff2a68c1cf8bbd0 schema:familyName Zhong
77 schema:givenName Ning
78 rdf:type schema:Person
79 N5c7656ff81c84ef1ab008d75ea80ed7d schema:familyName Hu
80 schema:givenName Bin
81 rdf:type schema:Person
82 N5d41d6562fe64e0cb5c2bd12d78c946f schema:name dimensions_id
83 schema:value pub.1027008377
84 rdf:type schema:PropertyValue
85 N6f453fd159ab4e9398855bfa73b41e45 schema:familyName Liu
86 schema:givenName Jiming
87 rdf:type schema:Person
88 N7f6bdb7d322f45c8b538da0bf64ca481 rdf:first N5722cd32ec6e4bed8ff2a68c1cf8bbd0
89 rdf:rest rdf:nil
90 N883f0b88945b4d60b2295b1b5d831f74 rdf:first sg:person.01326527402.59
91 rdf:rest rdf:nil
92 N92f7f4f33fd2431092fe321475f18f14 rdf:first sg:person.012247427067.95
93 rdf:rest Nd59de5590364423fbee7442de752e932
94 N9cf3d1d104e743ce82112634372e6b5c schema:name doi
95 schema:value 10.1007/978-3-642-23605-1_16
96 rdf:type schema:PropertyValue
97 Nc592617b850a4c07a239b5c4008eed0a rdf:first sg:person.013626462735.05
98 rdf:rest N883f0b88945b4d60b2295b1b5d831f74
99 Nd59de5590364423fbee7442de752e932 rdf:first sg:person.01255045237.08
100 rdf:rest Nc592617b850a4c07a239b5c4008eed0a
101 Ndce354d6aa4e4a6ea16287e8fdc88432 rdf:first Ne004799a3f8b4dbba331fc9121167025
102 rdf:rest N7f6bdb7d322f45c8b538da0bf64ca481
103 Ne004799a3f8b4dbba331fc9121167025 schema:familyName Chen
104 schema:givenName Lin
105 rdf:type schema:Person
106 Ne6ecec979d0a4f2f8febe5791cba3f6f schema:isbn 978-3-642-23604-4
107 978-3-642-23605-1
108 schema:name Brain Informatics
109 rdf:type schema:Book
110 Neb96a4ca021c492ba254c12966712a4a schema:location Berlin, Heidelberg
111 schema:name Springer Berlin Heidelberg
112 rdf:type schema:Organisation
113 Nfc61460d34d74762a69ad8a4e97eb156 rdf:first N5c7656ff81c84ef1ab008d75ea80ed7d
114 rdf:rest N27d9cc8e791a42a5a4843254cfcaf1b9
115 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
116 schema:name Medical and Health Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
119 schema:name Neurosciences
120 rdf:type schema:DefinedTerm
121 sg:person.01072234467.85 schema:affiliation https://www.grid.ac/institutes/grid.28703.3e
122 schema:familyName Wang
123 schema:givenName Zhijiang
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072234467.85
125 rdf:type schema:Person
126 sg:person.012247427067.95 schema:affiliation https://www.grid.ac/institutes/grid.444244.6
127 schema:familyName Zhong
128 schema:givenName Ning
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012247427067.95
130 rdf:type schema:Person
131 sg:person.01255045237.08 schema:affiliation https://www.grid.ac/institutes/grid.147455.6
132 schema:familyName Qin
133 schema:givenName Yulin
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255045237.08
135 rdf:type schema:Person
136 sg:person.01326527402.59 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
137 schema:familyName Li
138 schema:givenName Kuncheng
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59
140 rdf:type schema:Person
141 sg:person.013626462735.05 schema:affiliation https://www.grid.ac/institutes/grid.28703.3e
142 schema:familyName Zhou
143 schema:givenName Haiyan
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626462735.05
145 rdf:type schema:Person
146 sg:person.0756017611.57 schema:affiliation https://www.grid.ac/institutes/grid.221309.b
147 schema:familyName Liu
148 schema:givenName Jiming
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756017611.57
150 rdf:type schema:Person
151 sg:pub.10.1007/978-3-642-15314-3_41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020464135
152 https://doi.org/10.1007/978-3-642-15314-3_41
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
155 https://doi.org/10.1038/30918
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/335311a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017820996
158 https://doi.org/10.1038/335311a0
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nrn2201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053109894
161 https://doi.org/10.1038/nrn2201
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nrn2575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004953014
164 https://doi.org/10.1038/nrn2575
165 rdf:type schema:CreativeWork
166 sg:pub.10.1140/epjb/e2003-00095-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017530513
167 https://doi.org/10.1140/epjb/e2003-00095-5
168 rdf:type schema:CreativeWork
169 sg:pub.10.1385/ni:2:2:145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045648324
170 https://doi.org/10.1385/ni:2:2:145
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/hbm.20069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004413150
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1006/nimg.1998.0336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018798021
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1006/nimg.2001.0978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008623590
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.cub.2009.04.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025073143
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.neulet.2003.10.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039379294
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.neulet.2006.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019324536
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.neuroimage.2007.10.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015790317
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.neuroimage.2008.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037805849
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.neuroimage.2009.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022342218
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.tics.2004.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044882727
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/s1364-6613(98)01259-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010278161
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1073/pnas.0504136102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004124686
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1073/pnas.0606005103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046475978
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1073/pnas.0902455106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044539623
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/cercor/10.2.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027697690
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/cercor/bhi016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049616524
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1098/rspb.2005.3354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023018903
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1098/rstb.2000.0551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012661979
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1098/rstb.2000.0552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042329992
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1098/rstb.2005.1645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049791651
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevlett.87.198701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005667063
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevlett.94.018102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006741210
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1109/ijcnn.2010.5596646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095665495
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1126/science.1065103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048235090
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1126/science.298.5594.824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033238539
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1137/s003614450342480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877811
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1146/annurev.neuro.29.051605.112819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040095734
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1177/1073858406293182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028082387
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1371/journal.pcbi.0030017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040127483
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1371/journal.pone.0000597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021336259
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1523/jneurosci.3874-05.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003819788
233 rdf:type schema:CreativeWork
234 https://www.grid.ac/institutes/grid.147455.6 schema:alternateName Carnegie Mellon University
235 schema:name Beijing Municipal Lab of Brain Informatics, China
236 Dept. of Psychology, Carnegie Mellon University, USA
237 International WIC Institute, Beijing University of Technology, China
238 rdf:type schema:Organization
239 https://www.grid.ac/institutes/grid.221309.b schema:alternateName Hong Kong Baptist University
240 schema:name Beijing Municipal Lab of Brain Informatics, China
241 Dept. of Computer Science, Hong Kong Baptist University, China
242 International WIC Institute, Beijing University of Technology, China
243 rdf:type schema:Organization
244 https://www.grid.ac/institutes/grid.24696.3f schema:alternateName Capital Medical University
245 schema:name Beijing Municipal Lab of Brain Informatics, China
246 Dept. of Radiology, Xuanwu Hospital, Capital Medical University, China
247 rdf:type schema:Organization
248 https://www.grid.ac/institutes/grid.28703.3e schema:alternateName Beijing University of Technology
249 schema:name Beijing Municipal Lab of Brain Informatics, China
250 International WIC Institute, Beijing University of Technology, China
251 rdf:type schema:Organization
252 https://www.grid.ac/institutes/grid.444244.6 schema:alternateName Maebashi Institute of Technology
253 schema:name Beijing Municipal Lab of Brain Informatics, China
254 Dept. of Life Science and Informatics, Maebashi Institute of Technology, Japan
255 International WIC Institute, Beijing University of Technology, China
256 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...