A Fitness Granulation Approach for Large-Scale Structural Design Optimization View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Mohsen Davarynejad , Jos Vrancken , Jan van den Berg , Carlos A. Coello Coello

ABSTRACT

The complexity of large-scale mechanical optimization problems is partially due to the presence of high-dimensional design variables, the nature of the design variables, and the high computational cost of the finite element simulations needed to evaluate the fitness of candidate solutions. Evolutionary algorithms are ruled by competitive games of survival and not merely by absolute measures of fitness. They can also exploit the robustness of evolution against uncertainties in the fitness function evaluations. This chapter takes up the complexity challenge of mechanical optimization problems by proposing a new fitness granulation approach that attempts to cope with several difficulties of fitness approximation methods that have been reported in the specialized literature. The approach is based on adaptive fuzzy fitness granulation having as its main aim to strike a balance between the accuracy and the utility of the computations. The adaptation algorithm adjusts the number and size of the granules according to the perceived performance and level of convergence attained. Experimental results show that the proposed method accelerates the convergence towards solutions when compared to the performance of other, more popular approaches. This suggests its applicability to other complex finite element-based engineering design problems. More... »

PAGES

245-280

References to SciGraph publications

  • 2009-04. Design of a motorcycle frame using neuroacceleration strategies in MOEAs in JOURNAL OF HEURISTICS
  • 2010. A Survey of Fitness Approximation Methods Applied in Evolutionary Algorithms in COMPUTATIONAL INTELLIGENCE IN EXPENSIVE OPTIMIZATION PROBLEMS
  • 2004-03. Optimization of Construction of Tire Reinforcement by Genetic Algorithm in OPTIMIZATION AND ENGINEERING
  • 2000. Optimization of Noisy Fitness Functions by Means of Genetic Algorithms Using History of Search in PARALLEL PROBLEM SOLVING FROM NATURE PPSN VI
  • 2009-03. A similarity-based surrogate model for enhanced performance in genetic algorithms in OPSEARCH
  • 2004. Constrained Evolutionary Optimization by Approximate Ranking and Surrogate Models in PARALLEL PROBLEM SOLVING FROM NATURE - PPSN VIII
  • 2004. Fitness Inheritance in the Bayesian Optimization Algorithm in GENETIC AND EVOLUTIONARY COMPUTATION – GECCO 2004
  • 2010. A Review of Techniques for Handling Expensive Functions in Evolutionary Multi-Objective Optimization in COMPUTATIONAL INTELLIGENCE IN EXPENSIVE OPTIMIZATION PROBLEMS
  • 1998. Accelerating the convergence of evolutionary algorithms by fitness landscape approximation in PARALLEL PROBLEM SOLVING FROM NATURE — PPSN V
  • 2005-01. Faster convergence by means of fitness estimation in SOFT COMPUTING
  • 2005-07. Development of CFRP racing motorcycle rims using a heuristic evolutionary algorithm approach in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2003. Is Fitness Inheritance Useful for Real-World Applications? in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2009. Materials Science and Engineering in SPRINGER HANDBOOK OF MECHANICAL ENGINEERING
  • 2005-01. A comprehensive survey of fitness approximation in evolutionary computation in SOFT COMPUTING
  • 1998. Introductory Functional Analysis, With Applications to Boundary Value Problems and Finite Elements in NONE
  • Book

    TITLE

    Variants of Evolutionary Algorithms for Real-World Applications

    ISBN

    978-3-642-23423-1
    978-3-642-23424-8

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-23424-8_8

    DOI

    http://dx.doi.org/10.1007/978-3-642-23424-8_8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1000801622


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Delft University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.5292.c", 
              "name": [
                "Faculty of Technology, Policy and Management, Delft University of Technology, NL-2600, GA, Delft, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Davarynejad", 
            "givenName": "Mohsen", 
            "id": "sg:person.016232032121.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016232032121.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Delft University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.5292.c", 
              "name": [
                "Faculty of Technology, Policy and Management, Delft University of Technology, NL-2600, GA, Delft, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vrancken", 
            "givenName": "Jos", 
            "id": "sg:person.010302104461.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010302104461.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Delft University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.5292.c", 
              "name": [
                "Faculty of Technology, Policy and Management, Delft University of Technology, NL-2600, GA, Delft, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van den Berg", 
            "givenName": "Jan", 
            "id": "sg:person.011737642773.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011737642773.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto Polit\u00e9cnico Nacional", 
              "id": "https://www.grid.ac/institutes/grid.418275.d", 
              "name": [
                "Departmento de Computaci\u00f3n (Evolutionary Computation Group), CINVESTAV-IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, D.F. 07300, M\u00e9xico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Coello", 
            "givenName": "Carlos A. Coello", 
            "id": "sg:person.012160505340.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160505340.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-540-30738-9_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000255104", 
              "https://doi.org/10.1007/978-3-540-30738-9_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-30738-9_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000255104", 
              "https://doi.org/10.1007/978-3-540-30738-9_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cma.2004.02.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000309004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/nme.1927", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000576726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijar.2008.05.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000800317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mechatronics.2005.02.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002620342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compstruct.2004.04.039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004049456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36970-8_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005119556", 
              "https://doi.org/10.1007/3-540-36970-8_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10732-007-9069-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005168616", 
              "https://doi.org/10.1007/s10732-007-9069-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10732-007-9069-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005168616", 
              "https://doi.org/10.1007/s10732-007-9069-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0045-7825(01)00323-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005300445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:opte.0000013636.82848.01", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005394688", 
              "https://doi.org/10.1023/b:opte.0000013636.82848.01"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0263-8223(03)00098-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006151175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0263-8223(03)00098-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006151175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45356-3_56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011979066", 
              "https://doi.org/10.1007/3-540-45356-3_56"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45356-3_56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011979066", 
              "https://doi.org/10.1007/3-540-45356-3_56"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compstruct.2005.09.040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012691558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compstruct.2005.09.040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012691558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12597-009-0006-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015001670", 
              "https://doi.org/10.1007/s12597-009-0006-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12597-009-0006-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015001670", 
              "https://doi.org/10.1007/s12597-009-0006-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-004-0471-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015022835", 
              "https://doi.org/10.1007/s00158-004-0471-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-004-0471-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015022835", 
              "https://doi.org/10.1007/s00158-004-0471-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-004-0471-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015022835", 
              "https://doi.org/10.1007/s00158-004-0471-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/0305215031000069672", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021442609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/nme.1620191103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021794462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/nme.1620191103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021794462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compstruc.2004.10.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022186624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/315891.316014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022764796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-10701-6_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022976936", 
              "https://doi.org/10.1007/978-3-642-10701-6_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-10701-6_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022976936", 
              "https://doi.org/10.1007/978-3-642-10701-6_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00500-003-0328-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025730957", 
              "https://doi.org/10.1007/s00500-003-0328-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compstruct.2004.08.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030595616"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-10701-6_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030734281", 
              "https://doi.org/10.1007/978-3-642-10701-6_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-10701-6_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030734281", 
              "https://doi.org/10.1007/978-3-642-10701-6_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-0575-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032498009", 
              "https://doi.org/10.1007/978-1-4612-0575-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-0575-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032498009", 
              "https://doi.org/10.1007/978-1-4612-0575-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2010.03.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032724013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0964-1726/13/1/026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034419511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24855-2_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037116085", 
              "https://doi.org/10.1007/978-3-540-24855-2_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24855-2_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037116085", 
              "https://doi.org/10.1007/978-3-540-24855-2_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0056852", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037717498", 
              "https://doi.org/10.1007/bfb0056852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0965-0393/11/5/302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041649453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-30217-9_41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042900678", 
              "https://doi.org/10.1007/978-3-540-30217-9_41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-30217-9_41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042900678", 
              "https://doi.org/10.1007/978-3-540-30217-9_41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asoc.2009.09.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043304163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1568-4946(02)00067-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046201196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1568-4946(02)00067-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046201196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00500-003-0329-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051300750", 
              "https://doi.org/10.1007/s00500-003-0329-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/4235.873238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061172057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tevc.2002.800880", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061604546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tevc.2004.835247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061604644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tevc.2008.2009032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061604846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/ss/1177012413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064409909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4203/csets.4.13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1087827980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cec.2006.1688302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094063647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cec.2007.4424572", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094083268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sis.2005.1501610", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094296558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cec.2008.4631281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094529292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icec.1997.592366", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095518791"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012", 
        "datePublishedReg": "2012-01-01", 
        "description": "The complexity of large-scale mechanical optimization problems is partially due to the presence of high-dimensional design variables, the nature of the design variables, and the high computational cost of the finite element simulations needed to evaluate the fitness of candidate solutions. Evolutionary algorithms are ruled by competitive games of survival and not merely by absolute measures of fitness. They can also exploit the robustness of evolution against uncertainties in the fitness function evaluations. This chapter takes up the complexity challenge of mechanical optimization problems by proposing a new fitness granulation approach that attempts to cope with several difficulties of fitness approximation methods that have been reported in the specialized literature. The approach is based on adaptive fuzzy fitness granulation having as its main aim to strike a balance between the accuracy and the utility of the computations. The adaptation algorithm adjusts the number and size of the granules according to the perceived performance and level of convergence attained. Experimental results show that the proposed method accelerates the convergence towards solutions when compared to the performance of other, more popular approaches. This suggests its applicability to other complex finite element-based engineering design problems.", 
        "editor": [
          {
            "familyName": "Chiong", 
            "givenName": "Raymond", 
            "type": "Person"
          }, 
          {
            "familyName": "Weise", 
            "givenName": "Thomas", 
            "type": "Person"
          }, 
          {
            "familyName": "Michalewicz", 
            "givenName": "Zbigniew", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-23424-8_8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-23423-1", 
            "978-3-642-23424-8"
          ], 
          "name": "Variants of Evolutionary Algorithms for Real-World Applications", 
          "type": "Book"
        }, 
        "name": "A Fitness Granulation Approach for Large-Scale Structural Design Optimization", 
        "pagination": "245-280", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-23424-8_8"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "03d1359510fef50650cab6c163edc597b118068b990d9c33d20aa3d7437fa4c0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1000801622"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-23424-8_8", 
          "https://app.dimensions.ai/details/publication/pub.1000801622"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T00:45", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000243.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-642-23424-8_8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23424-8_8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23424-8_8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23424-8_8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23424-8_8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    246 TRIPLES      23 PREDICATES      71 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-23424-8_8 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N3e9f7ff1b2a1454bba82c6834bd3c821
    4 schema:citation sg:pub.10.1007/3-540-36970-8_3
    5 sg:pub.10.1007/3-540-45356-3_56
    6 sg:pub.10.1007/978-1-4612-0575-3
    7 sg:pub.10.1007/978-3-540-24855-2_5
    8 sg:pub.10.1007/978-3-540-30217-9_41
    9 sg:pub.10.1007/978-3-540-30738-9_3
    10 sg:pub.10.1007/978-3-642-10701-6_1
    11 sg:pub.10.1007/978-3-642-10701-6_2
    12 sg:pub.10.1007/bfb0056852
    13 sg:pub.10.1007/s00158-004-0471-3
    14 sg:pub.10.1007/s00500-003-0328-5
    15 sg:pub.10.1007/s00500-003-0329-4
    16 sg:pub.10.1007/s10732-007-9069-4
    17 sg:pub.10.1007/s12597-009-0006-1
    18 sg:pub.10.1023/b:opte.0000013636.82848.01
    19 https://doi.org/10.1002/nme.1620191103
    20 https://doi.org/10.1002/nme.1927
    21 https://doi.org/10.1016/j.asoc.2009.09.001
    22 https://doi.org/10.1016/j.cma.2004.02.016
    23 https://doi.org/10.1016/j.compstruc.2004.10.018
    24 https://doi.org/10.1016/j.compstruct.2004.04.039
    25 https://doi.org/10.1016/j.compstruct.2004.08.020
    26 https://doi.org/10.1016/j.compstruct.2005.09.040
    27 https://doi.org/10.1016/j.ijar.2008.05.004
    28 https://doi.org/10.1016/j.ins.2010.03.021
    29 https://doi.org/10.1016/j.mechatronics.2005.02.002
    30 https://doi.org/10.1016/s0045-7825(01)00323-1
    31 https://doi.org/10.1016/s0263-8223(03)00098-9
    32 https://doi.org/10.1016/s1568-4946(02)00067-4
    33 https://doi.org/10.1080/0305215031000069672
    34 https://doi.org/10.1088/0964-1726/13/1/026
    35 https://doi.org/10.1088/0965-0393/11/5/302
    36 https://doi.org/10.1109/4235.873238
    37 https://doi.org/10.1109/cec.2006.1688302
    38 https://doi.org/10.1109/cec.2007.4424572
    39 https://doi.org/10.1109/cec.2008.4631281
    40 https://doi.org/10.1109/icec.1997.592366
    41 https://doi.org/10.1109/sis.2005.1501610
    42 https://doi.org/10.1109/tevc.2002.800880
    43 https://doi.org/10.1109/tevc.2004.835247
    44 https://doi.org/10.1109/tevc.2008.2009032
    45 https://doi.org/10.1145/315891.316014
    46 https://doi.org/10.1214/ss/1177012413
    47 https://doi.org/10.4203/csets.4.13
    48 schema:datePublished 2012
    49 schema:datePublishedReg 2012-01-01
    50 schema:description The complexity of large-scale mechanical optimization problems is partially due to the presence of high-dimensional design variables, the nature of the design variables, and the high computational cost of the finite element simulations needed to evaluate the fitness of candidate solutions. Evolutionary algorithms are ruled by competitive games of survival and not merely by absolute measures of fitness. They can also exploit the robustness of evolution against uncertainties in the fitness function evaluations. This chapter takes up the complexity challenge of mechanical optimization problems by proposing a new fitness granulation approach that attempts to cope with several difficulties of fitness approximation methods that have been reported in the specialized literature. The approach is based on adaptive fuzzy fitness granulation having as its main aim to strike a balance between the accuracy and the utility of the computations. The adaptation algorithm adjusts the number and size of the granules according to the perceived performance and level of convergence attained. Experimental results show that the proposed method accelerates the convergence towards solutions when compared to the performance of other, more popular approaches. This suggests its applicability to other complex finite element-based engineering design problems.
    51 schema:editor Nec109dd3f0e2478bb62d9ee9494279c2
    52 schema:genre chapter
    53 schema:inLanguage en
    54 schema:isAccessibleForFree false
    55 schema:isPartOf Nc12905f31bf646c799f07908125947d0
    56 schema:name A Fitness Granulation Approach for Large-Scale Structural Design Optimization
    57 schema:pagination 245-280
    58 schema:productId N00196758cdc34b0994798f2a6e23b1d0
    59 N7fefd9bc92cf45a8a2ad37eae93a27cc
    60 Nf6196b7b7f7143b683082439a15ec34d
    61 schema:publisher N03f0d7ce43c24a9e9c52a5e3e5b8828f
    62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000801622
    63 https://doi.org/10.1007/978-3-642-23424-8_8
    64 schema:sdDatePublished 2019-04-16T00:45
    65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    66 schema:sdPublisher N8729f8f4ee29412698963c1b80643e2e
    67 schema:url http://link.springer.com/10.1007/978-3-642-23424-8_8
    68 sgo:license sg:explorer/license/
    69 sgo:sdDataset chapters
    70 rdf:type schema:Chapter
    71 N00196758cdc34b0994798f2a6e23b1d0 schema:name dimensions_id
    72 schema:value pub.1000801622
    73 rdf:type schema:PropertyValue
    74 N03f0d7ce43c24a9e9c52a5e3e5b8828f schema:location Berlin, Heidelberg
    75 schema:name Springer Berlin Heidelberg
    76 rdf:type schema:Organisation
    77 N30ffef80e75346f9a99a484c4bd156ab rdf:first N6f9683063154438a8a96bf95083bb9f5
    78 rdf:rest rdf:nil
    79 N3506975e908441eeb6232e156e5252d2 schema:familyName Weise
    80 schema:givenName Thomas
    81 rdf:type schema:Person
    82 N3e9f7ff1b2a1454bba82c6834bd3c821 rdf:first sg:person.016232032121.81
    83 rdf:rest Nf8aca28387a146c48bd04a89082a3850
    84 N4dfcb7aa04644fd48a83342535e0977a schema:familyName Chiong
    85 schema:givenName Raymond
    86 rdf:type schema:Person
    87 N6f2d00369e1748689807e549edde1f1a rdf:first N3506975e908441eeb6232e156e5252d2
    88 rdf:rest N30ffef80e75346f9a99a484c4bd156ab
    89 N6f9683063154438a8a96bf95083bb9f5 schema:familyName Michalewicz
    90 schema:givenName Zbigniew
    91 rdf:type schema:Person
    92 N7fefd9bc92cf45a8a2ad37eae93a27cc schema:name doi
    93 schema:value 10.1007/978-3-642-23424-8_8
    94 rdf:type schema:PropertyValue
    95 N8729f8f4ee29412698963c1b80643e2e schema:name Springer Nature - SN SciGraph project
    96 rdf:type schema:Organization
    97 Na2a1b32725284d1c9475d1a88bc2c677 rdf:first sg:person.011737642773.43
    98 rdf:rest Nb8fd205addc34990ad04471712b16b04
    99 Nb8fd205addc34990ad04471712b16b04 rdf:first sg:person.012160505340.13
    100 rdf:rest rdf:nil
    101 Nc12905f31bf646c799f07908125947d0 schema:isbn 978-3-642-23423-1
    102 978-3-642-23424-8
    103 schema:name Variants of Evolutionary Algorithms for Real-World Applications
    104 rdf:type schema:Book
    105 Nec109dd3f0e2478bb62d9ee9494279c2 rdf:first N4dfcb7aa04644fd48a83342535e0977a
    106 rdf:rest N6f2d00369e1748689807e549edde1f1a
    107 Nf6196b7b7f7143b683082439a15ec34d schema:name readcube_id
    108 schema:value 03d1359510fef50650cab6c163edc597b118068b990d9c33d20aa3d7437fa4c0
    109 rdf:type schema:PropertyValue
    110 Nf8aca28387a146c48bd04a89082a3850 rdf:first sg:person.010302104461.23
    111 rdf:rest Na2a1b32725284d1c9475d1a88bc2c677
    112 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Mathematical Sciences
    114 rdf:type schema:DefinedTerm
    115 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Numerical and Computational Mathematics
    117 rdf:type schema:DefinedTerm
    118 sg:person.010302104461.23 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
    119 schema:familyName Vrancken
    120 schema:givenName Jos
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010302104461.23
    122 rdf:type schema:Person
    123 sg:person.011737642773.43 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
    124 schema:familyName van den Berg
    125 schema:givenName Jan
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011737642773.43
    127 rdf:type schema:Person
    128 sg:person.012160505340.13 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
    129 schema:familyName Coello
    130 schema:givenName Carlos A. Coello
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160505340.13
    132 rdf:type schema:Person
    133 sg:person.016232032121.81 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
    134 schema:familyName Davarynejad
    135 schema:givenName Mohsen
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016232032121.81
    137 rdf:type schema:Person
    138 sg:pub.10.1007/3-540-36970-8_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005119556
    139 https://doi.org/10.1007/3-540-36970-8_3
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/3-540-45356-3_56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011979066
    142 https://doi.org/10.1007/3-540-45356-3_56
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/978-1-4612-0575-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032498009
    145 https://doi.org/10.1007/978-1-4612-0575-3
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/978-3-540-24855-2_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037116085
    148 https://doi.org/10.1007/978-3-540-24855-2_5
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/978-3-540-30217-9_41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042900678
    151 https://doi.org/10.1007/978-3-540-30217-9_41
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/978-3-540-30738-9_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000255104
    154 https://doi.org/10.1007/978-3-540-30738-9_3
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/978-3-642-10701-6_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030734281
    157 https://doi.org/10.1007/978-3-642-10701-6_1
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/978-3-642-10701-6_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022976936
    160 https://doi.org/10.1007/978-3-642-10701-6_2
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/bfb0056852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037717498
    163 https://doi.org/10.1007/bfb0056852
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s00158-004-0471-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015022835
    166 https://doi.org/10.1007/s00158-004-0471-3
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s00500-003-0328-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025730957
    169 https://doi.org/10.1007/s00500-003-0328-5
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s00500-003-0329-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051300750
    172 https://doi.org/10.1007/s00500-003-0329-4
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s10732-007-9069-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005168616
    175 https://doi.org/10.1007/s10732-007-9069-4
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s12597-009-0006-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015001670
    178 https://doi.org/10.1007/s12597-009-0006-1
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1023/b:opte.0000013636.82848.01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005394688
    181 https://doi.org/10.1023/b:opte.0000013636.82848.01
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1002/nme.1620191103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021794462
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1002/nme.1927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000576726
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1016/j.asoc.2009.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043304163
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1016/j.cma.2004.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000309004
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1016/j.compstruc.2004.10.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022186624
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1016/j.compstruct.2004.04.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004049456
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1016/j.compstruct.2004.08.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030595616
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/j.compstruct.2005.09.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012691558
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/j.ijar.2008.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000800317
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/j.ins.2010.03.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032724013
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1016/j.mechatronics.2005.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002620342
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1016/s0045-7825(01)00323-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005300445
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1016/s0263-8223(03)00098-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006151175
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1016/s1568-4946(02)00067-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046201196
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1080/0305215031000069672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021442609
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1088/0964-1726/13/1/026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034419511
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1088/0965-0393/11/5/302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041649453
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1109/4235.873238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061172057
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1109/cec.2006.1688302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094063647
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1109/cec.2007.4424572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094083268
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1109/cec.2008.4631281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094529292
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1109/icec.1997.592366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095518791
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1109/sis.2005.1501610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094296558
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1109/tevc.2002.800880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604546
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1109/tevc.2004.835247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604644
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1109/tevc.2008.2009032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604846
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1145/315891.316014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022764796
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1214/ss/1177012413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409909
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.4203/csets.4.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087827980
    240 rdf:type schema:CreativeWork
    241 https://www.grid.ac/institutes/grid.418275.d schema:alternateName Instituto Politécnico Nacional
    242 schema:name Departmento de Computación (Evolutionary Computation Group), CINVESTAV-IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, D.F. 07300, México
    243 rdf:type schema:Organization
    244 https://www.grid.ac/institutes/grid.5292.c schema:alternateName Delft University of Technology
    245 schema:name Faculty of Technology, Policy and Management, Delft University of Technology, NL-2600, GA, Delft, The Netherlands
    246 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...