Visualizing Invariant Manifolds in Area-Preserving Maps View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Xavier Tricoche , Christoph Garth , Allen Sanderson , Ken Joy

ABSTRACT

Area-preserving maps arise in the study of conservative dynamical systems describing a wide variety of physical phenomena, from the rotation of planets to the dynamics of a fluid. The visual inspection of these maps reveals a remarkable topological picture in which invariant manifolds form the fractal geometric scaffold of both quasi-periodic and chaotic regions. We discuss in this paper the visualization of such maps built upon these invariant manifolds. This approach is in stark contrast with the discrete Poincare plots that are typically used for the visual inspection of maps. We propose to that end several modified definitions of the finite-time Lyapunov exponents that we apply to reveal the underlying structure of the dynamics. We examine the impact of various parameters and the numerical aspects that pertain to the implementation of this method. We apply our technique to a standard analytical example and to a numerical simulation of magnetic confinement in a fusion reactor. In both cases our simple method is able to reveal salient structures across spatial scales and to yield expressive images across application domains. More... »

PAGES

109-124

References to SciGraph publications

Book

TITLE

Topological Methods in Data Analysis and Visualization II

ISBN

978-3-642-23174-2
978-3-642-23175-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-23175-9_8

DOI

http://dx.doi.org/10.1007/978-3-642-23175-9_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001588041


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Purdue University", 
          "id": "https://www.grid.ac/institutes/grid.169077.e", 
          "name": [
            "Purdue University, West Lafayette, IN\u00a047907, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tricoche", 
        "givenName": "Xavier", 
        "id": "sg:person.014405044562.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014405044562.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Davis", 
          "id": "https://www.grid.ac/institutes/grid.27860.3b", 
          "name": [
            "University of California Davis, Davis, CA\u00a095616, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garth", 
        "givenName": "Christoph", 
        "id": "sg:person.01245455273.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245455273.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Utah", 
          "id": "https://www.grid.ac/institutes/grid.223827.e", 
          "name": [
            "University of Utah, Salt Lake City, UT\u00a084112, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanderson", 
        "givenName": "Allen", 
        "id": "sg:person.0734426271.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734426271.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Davis", 
          "id": "https://www.grid.ac/institutes/grid.27860.3b", 
          "name": [
            "University of California Davis, Davis, CA\u00a095616, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joy", 
        "givenName": "Ken", 
        "id": "sg:person.016530205021.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016530205021.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-7091-7517-0_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004083684", 
          "https://doi.org/10.1007/978-3-7091-7517-0_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3458896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012164641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/260/1/012012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012963946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88606-8_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014438335", 
          "https://doi.org/10.1007/978-3-540-88606-8_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88606-8_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014438335", 
          "https://doi.org/10.1007/978-3-540-88606-8_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8659.2008.01236.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025745036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-70823-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028086966", 
          "https://doi.org/10.1007/978-3-540-70823-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-70823-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028086966", 
          "https://doi.org/10.1007/978-3-540-70823-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88606-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029445100", 
          "https://doi.org/10.1007/978-3-540-88606-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88606-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029445100", 
          "https://doi.org/10.1007/978-3-540-88606-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88606-8_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033170005", 
          "https://doi.org/10.1007/978-3-540-88606-8_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88606-8_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033170005", 
          "https://doi.org/10.1007/978-3-540-88606-8_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0771-050x(81)90010-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033860073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0771-050x(81)90010-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033860073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2789(00)00199-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040225523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03567-2_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043201293", 
          "https://doi.org/10.1007/978-3-662-03567-2_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8659.2009.01546.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048982753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8659.2009.01546.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048982753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s096249290100006x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054905217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.874062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058126144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.144502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.144502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/38.79452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061164195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2007.70551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061812883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2007.70554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061812886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2008.183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061813034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2010.133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061813317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/05062408x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062846001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972764.63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088800142"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Area-preserving maps arise in the study of conservative dynamical systems describing a wide variety of physical phenomena, from the rotation of planets to the dynamics of a fluid. The visual inspection of these maps reveals a remarkable topological picture in which invariant manifolds form the fractal geometric scaffold of both quasi-periodic and chaotic regions. We discuss in this paper the visualization of such maps built upon these invariant manifolds. This approach is in stark contrast with the discrete Poincare plots that are typically used for the visual inspection of maps. We propose to that end several modified definitions of the finite-time Lyapunov exponents that we apply to reveal the underlying structure of the dynamics. We examine the impact of various parameters and the numerical aspects that pertain to the implementation of this method. We apply our technique to a standard analytical example and to a numerical simulation of magnetic confinement in a fusion reactor. In both cases our simple method is able to reveal salient structures across spatial scales and to yield expressive images across application domains.", 
    "editor": [
      {
        "familyName": "Peikert", 
        "givenName": "Ronald", 
        "type": "Person"
      }, 
      {
        "familyName": "Hauser", 
        "givenName": "Helwig", 
        "type": "Person"
      }, 
      {
        "familyName": "Carr", 
        "givenName": "Hamish", 
        "type": "Person"
      }, 
      {
        "familyName": "Fuchs", 
        "givenName": "Raphael", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-23175-9_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-23174-2", 
        "978-3-642-23175-9"
      ], 
      "name": "Topological Methods in Data Analysis and Visualization II", 
      "type": "Book"
    }, 
    "name": "Visualizing Invariant Manifolds in Area-Preserving Maps", 
    "pagination": "109-124", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-23175-9_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0790a54ba959edf7df5fce418d345c2d8c0d88413d5250edd77cd5dcda1bc831"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001588041"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-23175-9_8", 
      "https://app.dimensions.ai/details/publication/pub.1001588041"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000244.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-23175-9_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23175-9_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23175-9_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23175-9_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23175-9_8'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      23 PREDICATES      49 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-23175-9_8 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N69eaa8ab3052493193a062bc6feb372d
4 schema:citation sg:pub.10.1007/978-3-540-70823-0
5 sg:pub.10.1007/978-3-540-88606-8
6 sg:pub.10.1007/978-3-540-88606-8_11
7 sg:pub.10.1007/978-3-540-88606-8_2
8 sg:pub.10.1007/978-3-662-03567-2_23
9 sg:pub.10.1007/978-3-7091-7517-0_6
10 https://doi.org/10.1016/0771-050x(81)90010-3
11 https://doi.org/10.1016/s0167-2789(00)00199-8
12 https://doi.org/10.1017/s096249290100006x
13 https://doi.org/10.1063/1.3458896
14 https://doi.org/10.1063/1.874062
15 https://doi.org/10.1088/1742-6596/260/1/012012
16 https://doi.org/10.1103/physrevlett.98.144502
17 https://doi.org/10.1109/38.79452
18 https://doi.org/10.1109/tvcg.2007.70551
19 https://doi.org/10.1109/tvcg.2007.70554
20 https://doi.org/10.1109/tvcg.2008.183
21 https://doi.org/10.1109/tvcg.2010.133
22 https://doi.org/10.1111/j.1467-8659.2008.01236.x
23 https://doi.org/10.1111/j.1467-8659.2009.01546.x
24 https://doi.org/10.1137/05062408x
25 https://doi.org/10.1137/1.9781611972764.63
26 schema:datePublished 2012
27 schema:datePublishedReg 2012-01-01
28 schema:description Area-preserving maps arise in the study of conservative dynamical systems describing a wide variety of physical phenomena, from the rotation of planets to the dynamics of a fluid. The visual inspection of these maps reveals a remarkable topological picture in which invariant manifolds form the fractal geometric scaffold of both quasi-periodic and chaotic regions. We discuss in this paper the visualization of such maps built upon these invariant manifolds. This approach is in stark contrast with the discrete Poincare plots that are typically used for the visual inspection of maps. We propose to that end several modified definitions of the finite-time Lyapunov exponents that we apply to reveal the underlying structure of the dynamics. We examine the impact of various parameters and the numerical aspects that pertain to the implementation of this method. We apply our technique to a standard analytical example and to a numerical simulation of magnetic confinement in a fusion reactor. In both cases our simple method is able to reveal salient structures across spatial scales and to yield expressive images across application domains.
29 schema:editor N98b0607c74f046ef8bdef004fac7ad4f
30 schema:genre chapter
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N453091e6aea14d77b147044f47796833
34 schema:name Visualizing Invariant Manifolds in Area-Preserving Maps
35 schema:pagination 109-124
36 schema:productId N541d2afafab74e7fab7f1d0a88ddf431
37 N9a0a226e461c4a5c9af9c0b6b344d794
38 Nf57bd4adc07d4ef5bf94381cac202d74
39 schema:publisher N770b79cbfb914c3d9fab2871fdca4083
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001588041
41 https://doi.org/10.1007/978-3-642-23175-9_8
42 schema:sdDatePublished 2019-04-15T22:52
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Na74df18c9fc140f5abd4272776b55490
45 schema:url http://link.springer.com/10.1007/978-3-642-23175-9_8
46 sgo:license sg:explorer/license/
47 sgo:sdDataset chapters
48 rdf:type schema:Chapter
49 N00fd150497bb4dbaa97f52969c5144fd schema:familyName Fuchs
50 schema:givenName Raphael
51 rdf:type schema:Person
52 N0cdfed8706d740bba47927b3a49ec437 schema:familyName Peikert
53 schema:givenName Ronald
54 rdf:type schema:Person
55 N1893b59f36ec4eafa6c1d4b6b0b4fe9e rdf:first N7fb6dca3af244a5180d48ff5e4555883
56 rdf:rest N28c3f1d83f70434a92483ccb441267dd
57 N28c3f1d83f70434a92483ccb441267dd rdf:first Nf4be7b93c368413491d6064695a7d2be
58 rdf:rest N4a0840d3d5b24c19bc57d388450aa0d6
59 N453091e6aea14d77b147044f47796833 schema:isbn 978-3-642-23174-2
60 978-3-642-23175-9
61 schema:name Topological Methods in Data Analysis and Visualization II
62 rdf:type schema:Book
63 N498e4cec5f4f42faaf70a884bafe8d4b rdf:first sg:person.01245455273.74
64 rdf:rest N9d55f0588f0548c2bc6b55ef0b6a71ee
65 N4a0840d3d5b24c19bc57d388450aa0d6 rdf:first N00fd150497bb4dbaa97f52969c5144fd
66 rdf:rest rdf:nil
67 N541d2afafab74e7fab7f1d0a88ddf431 schema:name dimensions_id
68 schema:value pub.1001588041
69 rdf:type schema:PropertyValue
70 N69eaa8ab3052493193a062bc6feb372d rdf:first sg:person.014405044562.80
71 rdf:rest N498e4cec5f4f42faaf70a884bafe8d4b
72 N770b79cbfb914c3d9fab2871fdca4083 schema:location Berlin, Heidelberg
73 schema:name Springer Berlin Heidelberg
74 rdf:type schema:Organisation
75 N7fb6dca3af244a5180d48ff5e4555883 schema:familyName Hauser
76 schema:givenName Helwig
77 rdf:type schema:Person
78 N88834f54a55a49308379afc910e45cc6 rdf:first sg:person.016530205021.80
79 rdf:rest rdf:nil
80 N98b0607c74f046ef8bdef004fac7ad4f rdf:first N0cdfed8706d740bba47927b3a49ec437
81 rdf:rest N1893b59f36ec4eafa6c1d4b6b0b4fe9e
82 N9a0a226e461c4a5c9af9c0b6b344d794 schema:name readcube_id
83 schema:value 0790a54ba959edf7df5fce418d345c2d8c0d88413d5250edd77cd5dcda1bc831
84 rdf:type schema:PropertyValue
85 N9d55f0588f0548c2bc6b55ef0b6a71ee rdf:first sg:person.0734426271.40
86 rdf:rest N88834f54a55a49308379afc910e45cc6
87 Na74df18c9fc140f5abd4272776b55490 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Nf4be7b93c368413491d6064695a7d2be schema:familyName Carr
90 schema:givenName Hamish
91 rdf:type schema:Person
92 Nf57bd4adc07d4ef5bf94381cac202d74 schema:name doi
93 schema:value 10.1007/978-3-642-23175-9_8
94 rdf:type schema:PropertyValue
95 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
96 schema:name Mathematical Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
99 schema:name Pure Mathematics
100 rdf:type schema:DefinedTerm
101 sg:person.01245455273.74 schema:affiliation https://www.grid.ac/institutes/grid.27860.3b
102 schema:familyName Garth
103 schema:givenName Christoph
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245455273.74
105 rdf:type schema:Person
106 sg:person.014405044562.80 schema:affiliation https://www.grid.ac/institutes/grid.169077.e
107 schema:familyName Tricoche
108 schema:givenName Xavier
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014405044562.80
110 rdf:type schema:Person
111 sg:person.016530205021.80 schema:affiliation https://www.grid.ac/institutes/grid.27860.3b
112 schema:familyName Joy
113 schema:givenName Ken
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016530205021.80
115 rdf:type schema:Person
116 sg:person.0734426271.40 schema:affiliation https://www.grid.ac/institutes/grid.223827.e
117 schema:familyName Sanderson
118 schema:givenName Allen
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734426271.40
120 rdf:type schema:Person
121 sg:pub.10.1007/978-3-540-70823-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028086966
122 https://doi.org/10.1007/978-3-540-70823-0
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/978-3-540-88606-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029445100
125 https://doi.org/10.1007/978-3-540-88606-8
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/978-3-540-88606-8_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033170005
128 https://doi.org/10.1007/978-3-540-88606-8_11
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/978-3-540-88606-8_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014438335
131 https://doi.org/10.1007/978-3-540-88606-8_2
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/978-3-662-03567-2_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043201293
134 https://doi.org/10.1007/978-3-662-03567-2_23
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/978-3-7091-7517-0_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004083684
137 https://doi.org/10.1007/978-3-7091-7517-0_6
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/0771-050x(81)90010-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033860073
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0167-2789(00)00199-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040225523
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1017/s096249290100006x schema:sameAs https://app.dimensions.ai/details/publication/pub.1054905217
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1063/1.3458896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012164641
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1063/1.874062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058126144
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1088/1742-6596/260/1/012012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012963946
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.98.144502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060833838
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/38.79452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061164195
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/tvcg.2007.70551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061812883
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/tvcg.2007.70554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061812886
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/tvcg.2008.183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061813034
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/tvcg.2010.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061813317
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1111/j.1467-8659.2008.01236.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025745036
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1111/j.1467-8659.2009.01546.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048982753
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1137/05062408x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062846001
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1137/1.9781611972764.63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088800142
170 rdf:type schema:CreativeWork
171 https://www.grid.ac/institutes/grid.169077.e schema:alternateName Purdue University
172 schema:name Purdue University, West Lafayette, IN 47907, USA
173 rdf:type schema:Organization
174 https://www.grid.ac/institutes/grid.223827.e schema:alternateName University of Utah
175 schema:name University of Utah, Salt Lake City, UT 84112, USA
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.27860.3b schema:alternateName University of California, Davis
178 schema:name University of California Davis, Davis, CA 95616, USA
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...