Discrete Optimization of the Multiphase Piecewise Constant Mumford-Shah Functional View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Noha El-Zehiry , Leo Grady

ABSTRACT

The Mumford-Shah model has been one of the most powerful models in image segmentation and denoising. The optimization of the multiphase Mumford-Shah energy functional has been performed using level sets methods that optimize the Mumford-Shah energy by evolving the level sets via the gradient descent. These methods are very slow and prone to getting stuck in local optima due to the use of the gradient descent. After the reformulation of the bimodal Mumford-Shah functional on a graph, several groups investigated the hierarchical extension of the graph representation to multi class. These approaches, though more effective than level sets, provide approximate solutions and can diverge away from the optimal solution. In this paper, we present a discrete optimization for the multiphase Mumford Shah functional that directly minimizes the multiphase functional without recursive bisection on the labels. Our approach handles the nonsubmodularity of the multiphase energy function and provide a global optimum if prior information is provided. More... »

PAGES

233-246

Book

TITLE

Energy Minimization Methods in Computer Vision and Pattern Recognition

ISBN

978-3-642-23093-6
978-3-642-23094-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-23094-3_17

DOI

http://dx.doi.org/10.1007/978-3-642-23094-3_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028855546


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, Image Analytics and Informatics, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, Image Analytics and Informatics, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "El-Zehiry", 
        "givenName": "Noha", 
        "id": "sg:person.07657676251.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07657676251.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, Image Analytics and Informatics, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, Image Analytics and Informatics, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grady", 
        "givenName": "Leo", 
        "id": "sg:person.0617232252.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617232252.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "The Mumford-Shah model has been one of the most powerful models in image segmentation and denoising. The optimization of the multiphase Mumford-Shah energy functional has been performed using level sets methods that optimize the Mumford-Shah energy by evolving the level sets via the gradient descent. These methods are very slow and prone to getting stuck in local optima due to the use of the gradient descent. After the reformulation of the bimodal Mumford-Shah functional on a graph, several groups investigated the hierarchical extension of the graph representation to multi class. These approaches, though more effective than level sets, provide approximate solutions and can diverge away from the optimal solution. In this paper, we present a discrete optimization for the multiphase Mumford Shah functional that directly minimizes the multiphase functional without recursive bisection on the labels. Our approach handles the nonsubmodularity of the multiphase energy function and provide a global optimum if prior information is provided.", 
    "editor": [
      {
        "familyName": "Boykov", 
        "givenName": "Yuri", 
        "type": "Person"
      }, 
      {
        "familyName": "Kahl", 
        "givenName": "Fredrik", 
        "type": "Person"
      }, 
      {
        "familyName": "Lempitsky", 
        "givenName": "Victor", 
        "type": "Person"
      }, 
      {
        "familyName": "Schmidt", 
        "givenName": "Frank R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-23094-3_17", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-23093-6", 
        "978-3-642-23094-3"
      ], 
      "name": "Energy Minimization Methods in Computer Vision and Pattern Recognition", 
      "type": "Book"
    }, 
    "keywords": [
      "level set method", 
      "set method", 
      "optimization", 
      "multiphase", 
      "Mumford-Shah", 
      "discrete optimization", 
      "energy", 
      "approximate solution", 
      "level sets", 
      "Mumford-Shah energy", 
      "gradient descent", 
      "solution", 
      "nonsubmodularity", 
      "energy function", 
      "optimal solution", 
      "piecewise constant Mumford-Shah", 
      "global optimum", 
      "Mumford-Shah model", 
      "method", 
      "model", 
      "denoising", 
      "prior information", 
      "image segmentation", 
      "hierarchical extension", 
      "multi class", 
      "recursive bisection", 
      "approach", 
      "graph representation", 
      "powerful model", 
      "set", 
      "optimum", 
      "reformulation", 
      "use", 
      "extension", 
      "graph", 
      "class", 
      "segmentation", 
      "representation", 
      "descent", 
      "bisection", 
      "Shah", 
      "function", 
      "information", 
      "labels", 
      "group", 
      "paper", 
      "multiphase Mumford-Shah energy", 
      "bimodal Mumford-Shah", 
      "multiphase Mumford Shah", 
      "Mumford Shah", 
      "multiphase energy function", 
      "Multiphase Piecewise Constant Mumford-Shah", 
      "Constant Mumford-Shah"
    ], 
    "name": "Discrete Optimization of the Multiphase Piecewise Constant Mumford-Shah Functional", 
    "pagination": "233-246", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028855546"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-23094-3_17"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-23094-3_17", 
      "https://app.dimensions.ai/details/publication/pub.1028855546"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_376.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-23094-3_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23094-3_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23094-3_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23094-3_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-23094-3_17'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      23 PREDICATES      79 URIs      72 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-23094-3_17 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N4c9fb3dcaa9840e38d3b01245a25bed8
4 schema:datePublished 2011
5 schema:datePublishedReg 2011-01-01
6 schema:description The Mumford-Shah model has been one of the most powerful models in image segmentation and denoising. The optimization of the multiphase Mumford-Shah energy functional has been performed using level sets methods that optimize the Mumford-Shah energy by evolving the level sets via the gradient descent. These methods are very slow and prone to getting stuck in local optima due to the use of the gradient descent. After the reformulation of the bimodal Mumford-Shah functional on a graph, several groups investigated the hierarchical extension of the graph representation to multi class. These approaches, though more effective than level sets, provide approximate solutions and can diverge away from the optimal solution. In this paper, we present a discrete optimization for the multiphase Mumford Shah functional that directly minimizes the multiphase functional without recursive bisection on the labels. Our approach handles the nonsubmodularity of the multiphase energy function and provide a global optimum if prior information is provided.
7 schema:editor Na9d753a3c457439293b58a5650793a4c
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N70a9ad8950604740b4de5c4c133a3c67
12 schema:keywords Constant Mumford-Shah
13 Multiphase Piecewise Constant Mumford-Shah
14 Mumford Shah
15 Mumford-Shah
16 Mumford-Shah energy
17 Mumford-Shah model
18 Shah
19 approach
20 approximate solution
21 bimodal Mumford-Shah
22 bisection
23 class
24 denoising
25 descent
26 discrete optimization
27 energy
28 energy function
29 extension
30 function
31 global optimum
32 gradient descent
33 graph
34 graph representation
35 group
36 hierarchical extension
37 image segmentation
38 information
39 labels
40 level set method
41 level sets
42 method
43 model
44 multi class
45 multiphase
46 multiphase Mumford Shah
47 multiphase Mumford-Shah energy
48 multiphase energy function
49 nonsubmodularity
50 optimal solution
51 optimization
52 optimum
53 paper
54 piecewise constant Mumford-Shah
55 powerful model
56 prior information
57 recursive bisection
58 reformulation
59 representation
60 segmentation
61 set
62 set method
63 solution
64 use
65 schema:name Discrete Optimization of the Multiphase Piecewise Constant Mumford-Shah Functional
66 schema:pagination 233-246
67 schema:productId N105dccb64a874ed3be115269955eaf60
68 N516438f8a4f94cdba54c6958c440cbb8
69 schema:publisher N08f54e3c9717493796b4b6ff18bbd567
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028855546
71 https://doi.org/10.1007/978-3-642-23094-3_17
72 schema:sdDatePublished 2022-01-01T19:21
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Nb012231a6ab64e36b62496c78e5bd738
75 schema:url https://doi.org/10.1007/978-3-642-23094-3_17
76 sgo:license sg:explorer/license/
77 sgo:sdDataset chapters
78 rdf:type schema:Chapter
79 N08f54e3c9717493796b4b6ff18bbd567 schema:name Springer Nature
80 rdf:type schema:Organisation
81 N0f9675b8d4204a6b85605633d04541eb schema:familyName Kahl
82 schema:givenName Fredrik
83 rdf:type schema:Person
84 N105dccb64a874ed3be115269955eaf60 schema:name dimensions_id
85 schema:value pub.1028855546
86 rdf:type schema:PropertyValue
87 N4c9fb3dcaa9840e38d3b01245a25bed8 rdf:first sg:person.07657676251.51
88 rdf:rest Ncad325257e4544ae9ff7d2b5f81f3229
89 N516438f8a4f94cdba54c6958c440cbb8 schema:name doi
90 schema:value 10.1007/978-3-642-23094-3_17
91 rdf:type schema:PropertyValue
92 N5eac4c8a5bf14ab98adb67411f2cf0ba schema:familyName Boykov
93 schema:givenName Yuri
94 rdf:type schema:Person
95 N70a9ad8950604740b4de5c4c133a3c67 schema:isbn 978-3-642-23093-6
96 978-3-642-23094-3
97 schema:name Energy Minimization Methods in Computer Vision and Pattern Recognition
98 rdf:type schema:Book
99 N792c8f0f2cdd40a6b9057e56226f6620 rdf:first Nc88014f1472843c4a01ccd967edb4c37
100 rdf:rest rdf:nil
101 N7f87c6ed96d246668f702b9cd639de06 schema:familyName Lempitsky
102 schema:givenName Victor
103 rdf:type schema:Person
104 N8aac6dd2ef454cb8887fedffde2d68c9 rdf:first N7f87c6ed96d246668f702b9cd639de06
105 rdf:rest N792c8f0f2cdd40a6b9057e56226f6620
106 Na9d753a3c457439293b58a5650793a4c rdf:first N5eac4c8a5bf14ab98adb67411f2cf0ba
107 rdf:rest Nd18c5af7ad33464cb7f308c8a6459835
108 Nb012231a6ab64e36b62496c78e5bd738 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Nc88014f1472843c4a01ccd967edb4c37 schema:familyName Schmidt
111 schema:givenName Frank R.
112 rdf:type schema:Person
113 Ncad325257e4544ae9ff7d2b5f81f3229 rdf:first sg:person.0617232252.77
114 rdf:rest rdf:nil
115 Nd18c5af7ad33464cb7f308c8a6459835 rdf:first N0f9675b8d4204a6b85605633d04541eb
116 rdf:rest N8aac6dd2ef454cb8887fedffde2d68c9
117 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
118 schema:name Mathematical Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
121 schema:name Numerical and Computational Mathematics
122 rdf:type schema:DefinedTerm
123 sg:person.0617232252.77 schema:affiliation grid-institutes:grid.419233.e
124 schema:familyName Grady
125 schema:givenName Leo
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617232252.77
127 rdf:type schema:Person
128 sg:person.07657676251.51 schema:affiliation grid-institutes:grid.419233.e
129 schema:familyName El-Zehiry
130 schema:givenName Noha
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07657676251.51
132 rdf:type schema:Person
133 grid-institutes:grid.419233.e schema:alternateName Siemens Corporate Research, Image Analytics and Informatics, Princeton, NJ, USA
134 schema:name Siemens Corporate Research, Image Analytics and Informatics, Princeton, NJ, USA
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...