Towards Reducing Taxicab Cruising Time Using Spatio-Temporal Profitability Maps View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2011

AUTHORS

Jason W. Powell , Yan Huang , Favyen Bastani , Minhe Ji

ABSTRACT

Taxicab service plays a vital role in public transportation by offering passengers quick personalized destination service in a semi-private and secure manner. Taxicabs cruise the road network looking for a fare at designated taxi stands or alongside the streets. However, this service is often inefficient due to a low ratio of live miles (miles with a fare) to cruising miles (miles without a fare). The unpredictable nature of passengers and destinations make efficient systematic routing a challenge. With higher fuel costs and decreasing budgets, pressure mounts on taxicab drivers who directly derive their income from fares and spend anywhere from 35-60 percent of their time cruising the road network for these fares. Therefore, the goal of this paper is to reduce the number of cruising miles while increasing the number of live miles, thus increasing profitability, without systematic routing. This paper presents a simple yet practical method for reducing cruising miles by suggesting profitable locations to taxicab drivers. The concept uses the same principle that a taxicab driver uses: follow your experience. In our approach, historical data serves as experience and a derived Spatio-Temporal Profitability (STP) map guides cruising taxicabs. We claim that the STP map is useful in guiding for better profitability and validate this by showing a positive correlation between the cruising profitability score based on the STP map and the actual profitability of the taxicab drivers. Experiments using a large Shanghai taxi GPS data set demonstrate the effectiveness of the proposed method. More... »

PAGES

242-260

Book

TITLE

Advances in Spatial and Temporal Databases

ISBN

978-3-642-22921-3
978-3-642-22922-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-22922-0_15

DOI

http://dx.doi.org/10.1007/978-3-642-22922-0_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045549842


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of North Texas", 
          "id": "https://www.grid.ac/institutes/grid.266869.5", 
          "name": [
            "University of North Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Powell", 
        "givenName": "Jason W.", 
        "id": "sg:person.013547027703.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013547027703.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Texas", 
          "id": "https://www.grid.ac/institutes/grid.266869.5", 
          "name": [
            "University of North Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Yan", 
        "id": "sg:person.01133501720.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133501720.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Texas", 
          "id": "https://www.grid.ac/institutes/grid.266869.5", 
          "name": [
            "University of North Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bastani", 
        "givenName": "Favyen", 
        "id": "sg:person.012130550225.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012130550225.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "East China Normal University, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "Minhe", 
        "id": "sg:person.01141724551.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141724551.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.tra.2010.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009913651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-16917-5_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010157231", 
          "https://doi.org/10.1007/978-3-642-16917-5_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03081060.2010.527172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030775521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1869790.1869807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048794633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1835804.1835918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051651814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-85565-1_69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052364875", 
          "https://doi.org/10.1007/978-3-540-85565-1_69"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-85565-1_69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052364875", 
          "https://doi.org/10.1007/978-3-540-85565-1_69"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9488(2010)136:1(42)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057604817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/tran.2010.163.4.203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068241777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/itsc.2009.5309520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094002815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/geoinformatics.2009.5293532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094817030"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "Taxicab service plays a vital role in public transportation by offering passengers quick personalized destination service in a semi-private and secure manner. Taxicabs cruise the road network looking for a fare at designated taxi stands or alongside the streets. However, this service is often inefficient due to a low ratio of live miles (miles with a fare) to cruising miles (miles without a fare). The unpredictable nature of passengers and destinations make efficient systematic routing a challenge. With higher fuel costs and decreasing budgets, pressure mounts on taxicab drivers who directly derive their income from fares and spend anywhere from 35-60 percent of their time cruising the road network for these fares. Therefore, the goal of this paper is to reduce the number of cruising miles while increasing the number of live miles, thus increasing profitability, without systematic routing. This paper presents a simple yet practical method for reducing cruising miles by suggesting profitable locations to taxicab drivers. The concept uses the same principle that a taxicab driver uses: follow your experience. In our approach, historical data serves as experience and a derived Spatio-Temporal Profitability (STP) map guides cruising taxicabs. We claim that the STP map is useful in guiding for better profitability and validate this by showing a positive correlation between the cruising profitability score based on the STP map and the actual profitability of the taxicab drivers. Experiments using a large Shanghai taxi GPS data set demonstrate the effectiveness of the proposed method.", 
    "editor": [
      {
        "familyName": "Pfoser", 
        "givenName": "Dieter", 
        "type": "Person"
      }, 
      {
        "familyName": "Tao", 
        "givenName": "Yufei", 
        "type": "Person"
      }, 
      {
        "familyName": "Mouratidis", 
        "givenName": "Kyriakos", 
        "type": "Person"
      }, 
      {
        "familyName": "Nascimento", 
        "givenName": "Mario A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Mokbel", 
        "givenName": "Mohamed", 
        "type": "Person"
      }, 
      {
        "familyName": "Shekhar", 
        "givenName": "Shashi", 
        "type": "Person"
      }, 
      {
        "familyName": "Huang", 
        "givenName": "Yan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-22922-0_15", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-22921-3", 
        "978-3-642-22922-0"
      ], 
      "name": "Advances in Spatial and Temporal Databases", 
      "type": "Book"
    }, 
    "name": "Towards Reducing Taxicab Cruising Time Using Spatio-Temporal Profitability Maps", 
    "pagination": "242-260", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045549842"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-22922-0_15"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d8f96455d203a153d659f3fe032b31648ab1a4bd50814fc5481e6a57218c99ba"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-22922-0_15", 
      "https://app.dimensions.ai/details/publication/pub.1045549842"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46754_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-22922-0_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22922-0_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22922-0_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22922-0_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22922-0_15'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-22922-0_15 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N67474b4c90ca4486ba800059d0e938e5
4 schema:citation sg:pub.10.1007/978-3-540-85565-1_69
5 sg:pub.10.1007/978-3-642-16917-5_9
6 https://doi.org/10.1016/j.tra.2010.03.004
7 https://doi.org/10.1061/(asce)0733-9488(2010)136:1(42)
8 https://doi.org/10.1080/03081060.2010.527172
9 https://doi.org/10.1109/geoinformatics.2009.5293532
10 https://doi.org/10.1109/itsc.2009.5309520
11 https://doi.org/10.1145/1835804.1835918
12 https://doi.org/10.1145/1869790.1869807
13 https://doi.org/10.1680/tran.2010.163.4.203
14 schema:datePublished 2011
15 schema:datePublishedReg 2011-01-01
16 schema:description Taxicab service plays a vital role in public transportation by offering passengers quick personalized destination service in a semi-private and secure manner. Taxicabs cruise the road network looking for a fare at designated taxi stands or alongside the streets. However, this service is often inefficient due to a low ratio of live miles (miles with a fare) to cruising miles (miles without a fare). The unpredictable nature of passengers and destinations make efficient systematic routing a challenge. With higher fuel costs and decreasing budgets, pressure mounts on taxicab drivers who directly derive their income from fares and spend anywhere from 35-60 percent of their time cruising the road network for these fares. Therefore, the goal of this paper is to reduce the number of cruising miles while increasing the number of live miles, thus increasing profitability, without systematic routing. This paper presents a simple yet practical method for reducing cruising miles by suggesting profitable locations to taxicab drivers. The concept uses the same principle that a taxicab driver uses: follow your experience. In our approach, historical data serves as experience and a derived Spatio-Temporal Profitability (STP) map guides cruising taxicabs. We claim that the STP map is useful in guiding for better profitability and validate this by showing a positive correlation between the cruising profitability score based on the STP map and the actual profitability of the taxicab drivers. Experiments using a large Shanghai taxi GPS data set demonstrate the effectiveness of the proposed method.
17 schema:editor N83dca5a49acd4f52b4e6d8b0cd8cac4b
18 schema:genre chapter
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf N46bd4cbac71e4ef3825fd757de357ce4
22 schema:name Towards Reducing Taxicab Cruising Time Using Spatio-Temporal Profitability Maps
23 schema:pagination 242-260
24 schema:productId N5dbecc8b2ae54ff693da6c433811c682
25 N737b0577df3048dbaa841e549099d153
26 Na1825eb21cca495b9cca69d4bf6ac292
27 schema:publisher Nebb3cf3d4aee43b6ac0cc520422c9263
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045549842
29 https://doi.org/10.1007/978-3-642-22922-0_15
30 schema:sdDatePublished 2019-04-16T09:04
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N448afdec6ccb4944b95628207a111871
33 schema:url https://link.springer.com/10.1007%2F978-3-642-22922-0_15
34 sgo:license sg:explorer/license/
35 sgo:sdDataset chapters
36 rdf:type schema:Chapter
37 N13e18057a56d4493b8e5f6245a4844b0 rdf:first N41d1f5d05ff84f778182f922c7c398e3
38 rdf:rest N27e29510f0754b9092a65335f60f5c6c
39 N27e29510f0754b9092a65335f60f5c6c rdf:first N49754f2444dc4701a017e9fa76c38156
40 rdf:rest N684c660ac8a14023bb8dff1ff3009382
41 N340638165d754caf98e960e2e93d36ec schema:familyName Tao
42 schema:givenName Yufei
43 rdf:type schema:Person
44 N41d1f5d05ff84f778182f922c7c398e3 schema:familyName Mokbel
45 schema:givenName Mohamed
46 rdf:type schema:Person
47 N448afdec6ccb4944b95628207a111871 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N44a8a7e8717542f09b3a957ecd10fad8 schema:familyName Huang
50 schema:givenName Yan
51 rdf:type schema:Person
52 N46bd4cbac71e4ef3825fd757de357ce4 schema:isbn 978-3-642-22921-3
53 978-3-642-22922-0
54 schema:name Advances in Spatial and Temporal Databases
55 rdf:type schema:Book
56 N49754f2444dc4701a017e9fa76c38156 schema:familyName Shekhar
57 schema:givenName Shashi
58 rdf:type schema:Person
59 N5dbecc8b2ae54ff693da6c433811c682 schema:name doi
60 schema:value 10.1007/978-3-642-22922-0_15
61 rdf:type schema:PropertyValue
62 N67474b4c90ca4486ba800059d0e938e5 rdf:first sg:person.013547027703.40
63 rdf:rest Nb82ba3869e1a44058e1885d2bb09a188
64 N681386d3da0b4656b3f82e05ba7d61c2 schema:familyName Pfoser
65 schema:givenName Dieter
66 rdf:type schema:Person
67 N684c660ac8a14023bb8dff1ff3009382 rdf:first N44a8a7e8717542f09b3a957ecd10fad8
68 rdf:rest rdf:nil
69 N6cf4a00670bf4aecaf1367de889e6bd6 schema:familyName Mouratidis
70 schema:givenName Kyriakos
71 rdf:type schema:Person
72 N737b0577df3048dbaa841e549099d153 schema:name readcube_id
73 schema:value d8f96455d203a153d659f3fe032b31648ab1a4bd50814fc5481e6a57218c99ba
74 rdf:type schema:PropertyValue
75 N83dca5a49acd4f52b4e6d8b0cd8cac4b rdf:first N681386d3da0b4656b3f82e05ba7d61c2
76 rdf:rest Ndae26848632e487bbb38423bba4acb63
77 N8b433b04dce24e7e9583b53b45e9ebc6 rdf:first sg:person.01141724551.14
78 rdf:rest rdf:nil
79 N8dd2338d77514ec6a3011bfb771db874 rdf:first sg:person.012130550225.51
80 rdf:rest N8b433b04dce24e7e9583b53b45e9ebc6
81 N91140a4e50cb48938be6d5f10f5f247c rdf:first N6cf4a00670bf4aecaf1367de889e6bd6
82 rdf:rest Nc44b012d5a554d57bf2519a4d38a56a1
83 Na1825eb21cca495b9cca69d4bf6ac292 schema:name dimensions_id
84 schema:value pub.1045549842
85 rdf:type schema:PropertyValue
86 Na9222eba02034e51ae627ecead11aa9e schema:familyName Nascimento
87 schema:givenName Mario A.
88 rdf:type schema:Person
89 Nb82ba3869e1a44058e1885d2bb09a188 rdf:first sg:person.01133501720.03
90 rdf:rest N8dd2338d77514ec6a3011bfb771db874
91 Nc44b012d5a554d57bf2519a4d38a56a1 rdf:first Na9222eba02034e51ae627ecead11aa9e
92 rdf:rest N13e18057a56d4493b8e5f6245a4844b0
93 Ndae26848632e487bbb38423bba4acb63 rdf:first N340638165d754caf98e960e2e93d36ec
94 rdf:rest N91140a4e50cb48938be6d5f10f5f247c
95 Nebb3cf3d4aee43b6ac0cc520422c9263 schema:location Berlin, Heidelberg
96 schema:name Springer Berlin Heidelberg
97 rdf:type schema:Organisation
98 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
99 schema:name Information and Computing Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
102 schema:name Artificial Intelligence and Image Processing
103 rdf:type schema:DefinedTerm
104 sg:person.01133501720.03 schema:affiliation https://www.grid.ac/institutes/grid.266869.5
105 schema:familyName Huang
106 schema:givenName Yan
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133501720.03
108 rdf:type schema:Person
109 sg:person.01141724551.14 schema:affiliation https://www.grid.ac/institutes/grid.22069.3f
110 schema:familyName Ji
111 schema:givenName Minhe
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141724551.14
113 rdf:type schema:Person
114 sg:person.012130550225.51 schema:affiliation https://www.grid.ac/institutes/grid.266869.5
115 schema:familyName Bastani
116 schema:givenName Favyen
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012130550225.51
118 rdf:type schema:Person
119 sg:person.013547027703.40 schema:affiliation https://www.grid.ac/institutes/grid.266869.5
120 schema:familyName Powell
121 schema:givenName Jason W.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013547027703.40
123 rdf:type schema:Person
124 sg:pub.10.1007/978-3-540-85565-1_69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052364875
125 https://doi.org/10.1007/978-3-540-85565-1_69
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/978-3-642-16917-5_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010157231
128 https://doi.org/10.1007/978-3-642-16917-5_9
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.tra.2010.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009913651
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1061/(asce)0733-9488(2010)136:1(42) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057604817
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1080/03081060.2010.527172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030775521
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/geoinformatics.2009.5293532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094817030
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/itsc.2009.5309520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094002815
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1145/1835804.1835918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051651814
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1145/1869790.1869807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048794633
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1680/tran.2010.163.4.203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068241777
145 rdf:type schema:CreativeWork
146 https://www.grid.ac/institutes/grid.22069.3f schema:alternateName East China Normal University
147 schema:name East China Normal University, China
148 rdf:type schema:Organization
149 https://www.grid.ac/institutes/grid.266869.5 schema:alternateName University of North Texas
150 schema:name University of North Texas, USA
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...