Pseudo-concave Integrals View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2011

AUTHORS

Radko Mesiar , Jun Li , Endre Pap

ABSTRACT

The notion of Lehrer-concave integral is generalized taking instead of the usual arithmetical operations of addition and multiplication of reals more general real operations called pseudo-addition and pseudo-multiplication.

PAGES

43-49

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-22833-9_5

DOI

http://dx.doi.org/10.1007/978-3-642-22833-9_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027059915


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "UTIA CAS, P.O. Box 18, 18208, Prague, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.424990.2", 
          "name": [
            "Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak University of Technology, Radlinsk\u00e9ho 11, 813 68, Bratislava, Slovakia", 
            "UTIA CAS, P.O. Box 18, 18208, Prague, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mesiar", 
        "givenName": "Radko", 
        "id": "sg:person.013374353164.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013374353164.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Science, Communication University of China, 100024, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.443274.2", 
          "name": [
            "School of Science, Communication University of China, 100024, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jun", 
        "id": "sg:person.010305232076.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010305232076.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00d3buda University, Becsi \u00fat 96/B, H-1034, Budapest, Hungary", 
          "id": "http://www.grid.ac/institutes/grid.440535.3", 
          "name": [
            "Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovi\u0107a 4, 21000, Novi Sad, Serbia", 
            "\u00d3buda University, Becsi \u00fat 96/B, H-1034, Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pap", 
        "givenName": "Endre", 
        "id": "sg:person.012354470173.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012354470173.10"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "The notion of Lehrer-concave integral is generalized taking instead of the usual arithmetical operations of addition and multiplication of reals more general real operations called pseudo-addition and pseudo-multiplication.", 
    "editor": [
      {
        "familyName": "Li", 
        "givenName": "Shoumei", 
        "type": "Person"
      }, 
      {
        "familyName": "Wang", 
        "givenName": "Xia", 
        "type": "Person"
      }, 
      {
        "familyName": "Okazaki", 
        "givenName": "Yoshiaki", 
        "type": "Person"
      }, 
      {
        "familyName": "Kawabe", 
        "givenName": "Jun", 
        "type": "Person"
      }, 
      {
        "familyName": "Murofushi", 
        "givenName": "Toshiaki", 
        "type": "Person"
      }, 
      {
        "familyName": "Guan", 
        "givenName": "Li", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-22833-9_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-22832-2", 
        "978-3-642-22833-9"
      ], 
      "name": "Nonlinear Mathematics for Uncertainty and its Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "addition", 
      "operation", 
      "multiplication", 
      "notion", 
      "integrals", 
      "Real", 
      "real operation", 
      "arithmetical operations", 
      "Lehrer-concave integral", 
      "usual arithmetical operations", 
      "multiplication of reals", 
      "general real operations", 
      "Pseudo-concave Integrals"
    ], 
    "name": "Pseudo-concave Integrals", 
    "pagination": "43-49", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027059915"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-22833-9_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-22833-9_5", 
      "https://app.dimensions.ai/details/publication/pub.1027059915"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T19:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_171.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-22833-9_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22833-9_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22833-9_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22833-9_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22833-9_5'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      22 PREDICATES      36 URIs      31 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-22833-9_5 schema:author Nc852cbf0c7164036b50d3a4d36807f91
2 schema:datePublished 2011
3 schema:datePublishedReg 2011-01-01
4 schema:description The notion of Lehrer-concave integral is generalized taking instead of the usual arithmetical operations of addition and multiplication of reals more general real operations called pseudo-addition and pseudo-multiplication.
5 schema:editor Nfd2a0c282a64405595f168d8bad8a63e
6 schema:genre chapter
7 schema:inLanguage en
8 schema:isAccessibleForFree true
9 schema:isPartOf N02a68e7a41394cc78961dab169a0553d
10 schema:keywords Lehrer-concave integral
11 Pseudo-concave Integrals
12 Real
13 addition
14 arithmetical operations
15 general real operations
16 integrals
17 multiplication
18 multiplication of reals
19 notion
20 operation
21 real operation
22 usual arithmetical operations
23 schema:name Pseudo-concave Integrals
24 schema:pagination 43-49
25 schema:productId N8a60d26f68b844a8991303d5fab22d6b
26 N986703eab8584d1db39d9c36402b1484
27 schema:publisher N61c5f4953eca4f798690869287ce96f2
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027059915
29 https://doi.org/10.1007/978-3-642-22833-9_5
30 schema:sdDatePublished 2021-12-01T19:58
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N275b0a2897c64d65ab71d89122932548
33 schema:url https://doi.org/10.1007/978-3-642-22833-9_5
34 sgo:license sg:explorer/license/
35 sgo:sdDataset chapters
36 rdf:type schema:Chapter
37 N02a68e7a41394cc78961dab169a0553d schema:isbn 978-3-642-22832-2
38 978-3-642-22833-9
39 schema:name Nonlinear Mathematics for Uncertainty and its Applications
40 rdf:type schema:Book
41 N042ea545ee7a47bb9f57a06693b8c3ae rdf:first sg:person.012354470173.10
42 rdf:rest rdf:nil
43 N1b356c0d49b54da78143fdeaa0c1ad84 rdf:first N6859ab2346244ca4ae489bd11419ddcf
44 rdf:rest Nf32697ae3af84bb0bfe60713409812ec
45 N275b0a2897c64d65ab71d89122932548 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N2cdaf62ff4114514bcef674e50486fde schema:familyName Murofushi
48 schema:givenName Toshiaki
49 rdf:type schema:Person
50 N565180a4562f497493ca5aa94c315dc9 schema:familyName Li
51 schema:givenName Shoumei
52 rdf:type schema:Person
53 N61c5f4953eca4f798690869287ce96f2 schema:name Springer Nature
54 rdf:type schema:Organisation
55 N6859ab2346244ca4ae489bd11419ddcf schema:familyName Okazaki
56 schema:givenName Yoshiaki
57 rdf:type schema:Person
58 N78cc83a75eb8478c831fe23340330554 schema:familyName Guan
59 schema:givenName Li
60 rdf:type schema:Person
61 N7a731b9e330f42a2a717702fb230a5f5 rdf:first N78cc83a75eb8478c831fe23340330554
62 rdf:rest rdf:nil
63 N8358d9bd7f4c418c8243da0e9ff47087 schema:familyName Kawabe
64 schema:givenName Jun
65 rdf:type schema:Person
66 N8a60d26f68b844a8991303d5fab22d6b schema:name dimensions_id
67 schema:value pub.1027059915
68 rdf:type schema:PropertyValue
69 N986703eab8584d1db39d9c36402b1484 schema:name doi
70 schema:value 10.1007/978-3-642-22833-9_5
71 rdf:type schema:PropertyValue
72 Nabd102f1e9324737b9bb798c4a0286f8 rdf:first N2cdaf62ff4114514bcef674e50486fde
73 rdf:rest N7a731b9e330f42a2a717702fb230a5f5
74 Nb46729e891e44b578c489b4e165bffdf schema:familyName Wang
75 schema:givenName Xia
76 rdf:type schema:Person
77 Nbee54b40ceaf47d8b79ad686a846c921 rdf:first sg:person.010305232076.04
78 rdf:rest N042ea545ee7a47bb9f57a06693b8c3ae
79 Nc852cbf0c7164036b50d3a4d36807f91 rdf:first sg:person.013374353164.75
80 rdf:rest Nbee54b40ceaf47d8b79ad686a846c921
81 Ncc8115b4c8e24faebd1898152bdc19ad rdf:first Nb46729e891e44b578c489b4e165bffdf
82 rdf:rest N1b356c0d49b54da78143fdeaa0c1ad84
83 Nf32697ae3af84bb0bfe60713409812ec rdf:first N8358d9bd7f4c418c8243da0e9ff47087
84 rdf:rest Nabd102f1e9324737b9bb798c4a0286f8
85 Nfd2a0c282a64405595f168d8bad8a63e rdf:first N565180a4562f497493ca5aa94c315dc9
86 rdf:rest Ncc8115b4c8e24faebd1898152bdc19ad
87 sg:person.010305232076.04 schema:affiliation grid-institutes:grid.443274.2
88 schema:familyName Li
89 schema:givenName Jun
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010305232076.04
91 rdf:type schema:Person
92 sg:person.012354470173.10 schema:affiliation grid-institutes:grid.440535.3
93 schema:familyName Pap
94 schema:givenName Endre
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012354470173.10
96 rdf:type schema:Person
97 sg:person.013374353164.75 schema:affiliation grid-institutes:grid.424990.2
98 schema:familyName Mesiar
99 schema:givenName Radko
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013374353164.75
101 rdf:type schema:Person
102 grid-institutes:grid.424990.2 schema:alternateName UTIA CAS, P.O. Box 18, 18208, Prague, Czech Republic
103 schema:name Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, 813 68, Bratislava, Slovakia
104 UTIA CAS, P.O. Box 18, 18208, Prague, Czech Republic
105 rdf:type schema:Organization
106 grid-institutes:grid.440535.3 schema:alternateName Óbuda University, Becsi út 96/B, H-1034, Budapest, Hungary
107 schema:name Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000, Novi Sad, Serbia
108 Óbuda University, Becsi út 96/B, H-1034, Budapest, Hungary
109 rdf:type schema:Organization
110 grid-institutes:grid.443274.2 schema:alternateName School of Science, Communication University of China, 100024, Beijing, People’s Republic of China
111 schema:name School of Science, Communication University of China, 100024, Beijing, People’s Republic of China
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...