Classical Cryptographic Protocols in a Quantum World View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2011

AUTHORS

Sean Hallgren , Adam Smith , Fang Song

ABSTRACT

Cryptographic protocols, such as protocols for secure function evaluation (SFE), have played a crucial role in the development of modern cryptography. The extensive theory of these protocols, however, deals almost exclusively with classical attackers. If we accept that quantum information processing is the most realistic model of physically feasible computation, then we must ask: what classical protocols remain secure against quantum attackers?Our main contribution is showing the existence of classical two-party protocols for the secure evaluation of any polynomial-time function under reasonable computational assumptions (for example, it suffices that the learning with errors problem be hard for quantum polynomial time). Our result shows that the basic two-party feasibility picture from classical cryptography remains unchanged in a quantum world. More... »

PAGES

411-428

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-22792-9_23

DOI

http://dx.doi.org/10.1007/978-3-642-22792-9_23

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001386016


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, U.S.A.", 
          "id": "http://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hallgren", 
        "givenName": "Sean", 
        "id": "sg:person.012120220205.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012120220205.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, U.S.A.", 
          "id": "http://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "Adam", 
        "id": "sg:person.013307226666.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013307226666.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, U.S.A.", 
          "id": "http://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Fang", 
        "id": "sg:person.015062013354.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015062013354.78"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "Cryptographic protocols, such as protocols for secure function evaluation (SFE), have played a crucial role in the development of modern cryptography. The extensive theory of these protocols, however, deals almost exclusively with classical attackers. If we accept that quantum information processing is the most realistic model of physically feasible computation, then we must ask: what classical protocols remain secure against quantum attackers?Our main contribution is showing the existence of classical two-party protocols for the secure evaluation of any polynomial-time function under reasonable computational assumptions (for example, it suffices that the learning with errors problem be hard for quantum polynomial time). Our result shows that the basic two-party feasibility picture from classical cryptography remains unchanged in a quantum world.", 
    "editor": [
      {
        "familyName": "Rogaway", 
        "givenName": "Phillip", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-22792-9_23", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-22791-2", 
        "978-3-642-22792-9"
      ], 
      "name": "Advances in Cryptology \u2013 CRYPTO 2011", 
      "type": "Book"
    }, 
    "keywords": [
      "secure function evaluation", 
      "cryptographic protocols", 
      "classical cryptographic protocols", 
      "two-party protocol", 
      "modern cryptography", 
      "polynomial time functions", 
      "secure evaluation", 
      "computational assumptions", 
      "classical cryptography", 
      "quantum attackers", 
      "feasible computation", 
      "main contribution", 
      "cryptography", 
      "attacker", 
      "function evaluations", 
      "classical protocols", 
      "quantum world", 
      "protocol", 
      "information processing", 
      "quantum information processing", 
      "computation", 
      "extensive theory", 
      "realistic model", 
      "processing", 
      "world", 
      "evaluation", 
      "model", 
      "deal", 
      "assumption", 
      "development", 
      "results", 
      "crucial role", 
      "picture", 
      "contribution", 
      "function", 
      "theory", 
      "existence", 
      "role"
    ], 
    "name": "Classical Cryptographic Protocols in a Quantum World", 
    "pagination": "411-428", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001386016"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-22792-9_23"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-22792-9_23", 
      "https://app.dimensions.ai/details/publication/pub.1001386016"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_196.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-22792-9_23"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22792-9_23'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22792-9_23'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22792-9_23'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22792-9_23'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      23 PREDICATES      67 URIs      57 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-22792-9_23 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 anzsrc-for:08
4 anzsrc-for:0802
5 anzsrc-for:0804
6 schema:author Nde5365d17af144488a3817d8e6be6188
7 schema:datePublished 2011
8 schema:datePublishedReg 2011-01-01
9 schema:description Cryptographic protocols, such as protocols for secure function evaluation (SFE), have played a crucial role in the development of modern cryptography. The extensive theory of these protocols, however, deals almost exclusively with classical attackers. If we accept that quantum information processing is the most realistic model of physically feasible computation, then we must ask: what classical protocols remain secure against quantum attackers?Our main contribution is showing the existence of classical two-party protocols for the secure evaluation of any polynomial-time function under reasonable computational assumptions (for example, it suffices that the learning with errors problem be hard for quantum polynomial time). Our result shows that the basic two-party feasibility picture from classical cryptography remains unchanged in a quantum world.
10 schema:editor N1a3c288abe3e49a1a30d21a25c392551
11 schema:genre chapter
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf Nc98c16b8388f43819e0278721aa3bafb
15 schema:keywords assumption
16 attacker
17 classical cryptographic protocols
18 classical cryptography
19 classical protocols
20 computation
21 computational assumptions
22 contribution
23 crucial role
24 cryptographic protocols
25 cryptography
26 deal
27 development
28 evaluation
29 existence
30 extensive theory
31 feasible computation
32 function
33 function evaluations
34 information processing
35 main contribution
36 model
37 modern cryptography
38 picture
39 polynomial time functions
40 processing
41 protocol
42 quantum attackers
43 quantum information processing
44 quantum world
45 realistic model
46 results
47 role
48 secure evaluation
49 secure function evaluation
50 theory
51 two-party protocol
52 world
53 schema:name Classical Cryptographic Protocols in a Quantum World
54 schema:pagination 411-428
55 schema:productId N28f3581c017543939f2fc577a1ce37a2
56 Nb6829eb131004333bc369badb1a830ce
57 schema:publisher Nd50b57e06df147b998272f4e8dbeec32
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001386016
59 https://doi.org/10.1007/978-3-642-22792-9_23
60 schema:sdDatePublished 2022-06-01T22:29
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N496db49bba984563b42817f89aade9b9
63 schema:url https://doi.org/10.1007/978-3-642-22792-9_23
64 sgo:license sg:explorer/license/
65 sgo:sdDataset chapters
66 rdf:type schema:Chapter
67 N048d106c5677481b96dfc120ebed7818 rdf:first sg:person.013307226666.21
68 rdf:rest Nca3686e53de74822bf39730ede05c86e
69 N14dd1b0e224f44c5bce425bcc47351a7 schema:familyName Rogaway
70 schema:givenName Phillip
71 rdf:type schema:Person
72 N1a3c288abe3e49a1a30d21a25c392551 rdf:first N14dd1b0e224f44c5bce425bcc47351a7
73 rdf:rest rdf:nil
74 N28f3581c017543939f2fc577a1ce37a2 schema:name doi
75 schema:value 10.1007/978-3-642-22792-9_23
76 rdf:type schema:PropertyValue
77 N496db49bba984563b42817f89aade9b9 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Nb6829eb131004333bc369badb1a830ce schema:name dimensions_id
80 schema:value pub.1001386016
81 rdf:type schema:PropertyValue
82 Nc98c16b8388f43819e0278721aa3bafb schema:isbn 978-3-642-22791-2
83 978-3-642-22792-9
84 schema:name Advances in Cryptology – CRYPTO 2011
85 rdf:type schema:Book
86 Nca3686e53de74822bf39730ede05c86e rdf:first sg:person.015062013354.78
87 rdf:rest rdf:nil
88 Nd50b57e06df147b998272f4e8dbeec32 schema:name Springer Nature
89 rdf:type schema:Organisation
90 Nde5365d17af144488a3817d8e6be6188 rdf:first sg:person.012120220205.14
91 rdf:rest N048d106c5677481b96dfc120ebed7818
92 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
93 schema:name Physical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
96 schema:name Quantum Physics
97 rdf:type schema:DefinedTerm
98 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
99 schema:name Information and Computing Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
102 schema:name Computation Theory and Mathematics
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
105 schema:name Data Format
106 rdf:type schema:DefinedTerm
107 sg:person.012120220205.14 schema:affiliation grid-institutes:grid.29857.31
108 schema:familyName Hallgren
109 schema:givenName Sean
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012120220205.14
111 rdf:type schema:Person
112 sg:person.013307226666.21 schema:affiliation grid-institutes:grid.29857.31
113 schema:familyName Smith
114 schema:givenName Adam
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013307226666.21
116 rdf:type schema:Person
117 sg:person.015062013354.78 schema:affiliation grid-institutes:grid.29857.31
118 schema:familyName Song
119 schema:givenName Fang
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015062013354.78
121 rdf:type schema:Person
122 grid-institutes:grid.29857.31 schema:alternateName Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, U.S.A.
123 schema:name Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, U.S.A.
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...