Ontology type: schema:Chapter Open Access: True
2011
AUTHORSSean Hallgren , Adam Smith , Fang Song
ABSTRACTCryptographic protocols, such as protocols for secure function evaluation (SFE), have played a crucial role in the development of modern cryptography. The extensive theory of these protocols, however, deals almost exclusively with classical attackers. If we accept that quantum information processing is the most realistic model of physically feasible computation, then we must ask: what classical protocols remain secure against quantum attackers?Our main contribution is showing the existence of classical two-party protocols for the secure evaluation of any polynomial-time function under reasonable computational assumptions (for example, it suffices that the learning with errors problem be hard for quantum polynomial time). Our result shows that the basic two-party feasibility picture from classical cryptography remains unchanged in a quantum world. More... »
PAGES411-428
Advances in Cryptology – CRYPTO 2011
ISBN
978-3-642-22791-2
978-3-642-22792-9
http://scigraph.springernature.com/pub.10.1007/978-3-642-22792-9_23
DOIhttp://dx.doi.org/10.1007/978-3-642-22792-9_23
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1001386016
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Quantum Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Data Format",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, U.S.A.",
"id": "http://www.grid.ac/institutes/grid.29857.31",
"name": [
"Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, U.S.A."
],
"type": "Organization"
},
"familyName": "Hallgren",
"givenName": "Sean",
"id": "sg:person.012120220205.14",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012120220205.14"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, U.S.A.",
"id": "http://www.grid.ac/institutes/grid.29857.31",
"name": [
"Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, U.S.A."
],
"type": "Organization"
},
"familyName": "Smith",
"givenName": "Adam",
"id": "sg:person.013307226666.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013307226666.21"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, U.S.A.",
"id": "http://www.grid.ac/institutes/grid.29857.31",
"name": [
"Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, U.S.A."
],
"type": "Organization"
},
"familyName": "Song",
"givenName": "Fang",
"id": "sg:person.015062013354.78",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015062013354.78"
],
"type": "Person"
}
],
"datePublished": "2011",
"datePublishedReg": "2011-01-01",
"description": "Cryptographic protocols, such as protocols for secure function evaluation (SFE), have played a crucial role in the development of modern cryptography. The extensive theory of these protocols, however, deals almost exclusively with classical attackers. If we accept that quantum information processing is the most realistic model of physically feasible computation, then we must ask: what classical protocols remain secure against quantum attackers?Our main contribution is showing the existence of classical two-party protocols for the secure evaluation of any polynomial-time function under reasonable computational assumptions (for example, it suffices that the learning with errors problem be hard for quantum polynomial time). Our result shows that the basic two-party feasibility picture from classical cryptography remains unchanged in a quantum world.",
"editor": [
{
"familyName": "Rogaway",
"givenName": "Phillip",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-22792-9_23",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-642-22791-2",
"978-3-642-22792-9"
],
"name": "Advances in Cryptology \u2013 CRYPTO 2011",
"type": "Book"
},
"keywords": [
"secure function evaluation",
"cryptographic protocols",
"classical cryptographic protocols",
"two-party protocol",
"modern cryptography",
"polynomial time functions",
"secure evaluation",
"computational assumptions",
"classical cryptography",
"quantum attackers",
"feasible computation",
"main contribution",
"cryptography",
"attacker",
"function evaluations",
"classical protocols",
"quantum world",
"protocol",
"information processing",
"quantum information processing",
"computation",
"extensive theory",
"realistic model",
"processing",
"world",
"evaluation",
"model",
"deal",
"assumption",
"development",
"results",
"crucial role",
"picture",
"contribution",
"function",
"theory",
"existence",
"role"
],
"name": "Classical Cryptographic Protocols in a Quantum World",
"pagination": "411-428",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1001386016"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-22792-9_23"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-22792-9_23",
"https://app.dimensions.ai/details/publication/pub.1001386016"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:29",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_196.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-22792-9_23"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22792-9_23'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22792-9_23'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22792-9_23'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22792-9_23'
This table displays all metadata directly associated to this object as RDF triples.
124 TRIPLES
23 PREDICATES
67 URIs
57 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-22792-9_23 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0206 |
3 | ″ | ″ | anzsrc-for:08 |
4 | ″ | ″ | anzsrc-for:0802 |
5 | ″ | ″ | anzsrc-for:0804 |
6 | ″ | schema:author | Nde5365d17af144488a3817d8e6be6188 |
7 | ″ | schema:datePublished | 2011 |
8 | ″ | schema:datePublishedReg | 2011-01-01 |
9 | ″ | schema:description | Cryptographic protocols, such as protocols for secure function evaluation (SFE), have played a crucial role in the development of modern cryptography. The extensive theory of these protocols, however, deals almost exclusively with classical attackers. If we accept that quantum information processing is the most realistic model of physically feasible computation, then we must ask: what classical protocols remain secure against quantum attackers?Our main contribution is showing the existence of classical two-party protocols for the secure evaluation of any polynomial-time function under reasonable computational assumptions (for example, it suffices that the learning with errors problem be hard for quantum polynomial time). Our result shows that the basic two-party feasibility picture from classical cryptography remains unchanged in a quantum world. |
10 | ″ | schema:editor | N1a3c288abe3e49a1a30d21a25c392551 |
11 | ″ | schema:genre | chapter |
12 | ″ | schema:inLanguage | en |
13 | ″ | schema:isAccessibleForFree | true |
14 | ″ | schema:isPartOf | Nc98c16b8388f43819e0278721aa3bafb |
15 | ″ | schema:keywords | assumption |
16 | ″ | ″ | attacker |
17 | ″ | ″ | classical cryptographic protocols |
18 | ″ | ″ | classical cryptography |
19 | ″ | ″ | classical protocols |
20 | ″ | ″ | computation |
21 | ″ | ″ | computational assumptions |
22 | ″ | ″ | contribution |
23 | ″ | ″ | crucial role |
24 | ″ | ″ | cryptographic protocols |
25 | ″ | ″ | cryptography |
26 | ″ | ″ | deal |
27 | ″ | ″ | development |
28 | ″ | ″ | evaluation |
29 | ″ | ″ | existence |
30 | ″ | ″ | extensive theory |
31 | ″ | ″ | feasible computation |
32 | ″ | ″ | function |
33 | ″ | ″ | function evaluations |
34 | ″ | ″ | information processing |
35 | ″ | ″ | main contribution |
36 | ″ | ″ | model |
37 | ″ | ″ | modern cryptography |
38 | ″ | ″ | picture |
39 | ″ | ″ | polynomial time functions |
40 | ″ | ″ | processing |
41 | ″ | ″ | protocol |
42 | ″ | ″ | quantum attackers |
43 | ″ | ″ | quantum information processing |
44 | ″ | ″ | quantum world |
45 | ″ | ″ | realistic model |
46 | ″ | ″ | results |
47 | ″ | ″ | role |
48 | ″ | ″ | secure evaluation |
49 | ″ | ″ | secure function evaluation |
50 | ″ | ″ | theory |
51 | ″ | ″ | two-party protocol |
52 | ″ | ″ | world |
53 | ″ | schema:name | Classical Cryptographic Protocols in a Quantum World |
54 | ″ | schema:pagination | 411-428 |
55 | ″ | schema:productId | N28f3581c017543939f2fc577a1ce37a2 |
56 | ″ | ″ | Nb6829eb131004333bc369badb1a830ce |
57 | ″ | schema:publisher | Nd50b57e06df147b998272f4e8dbeec32 |
58 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1001386016 |
59 | ″ | ″ | https://doi.org/10.1007/978-3-642-22792-9_23 |
60 | ″ | schema:sdDatePublished | 2022-06-01T22:29 |
61 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
62 | ″ | schema:sdPublisher | N496db49bba984563b42817f89aade9b9 |
63 | ″ | schema:url | https://doi.org/10.1007/978-3-642-22792-9_23 |
64 | ″ | sgo:license | sg:explorer/license/ |
65 | ″ | sgo:sdDataset | chapters |
66 | ″ | rdf:type | schema:Chapter |
67 | N048d106c5677481b96dfc120ebed7818 | rdf:first | sg:person.013307226666.21 |
68 | ″ | rdf:rest | Nca3686e53de74822bf39730ede05c86e |
69 | N14dd1b0e224f44c5bce425bcc47351a7 | schema:familyName | Rogaway |
70 | ″ | schema:givenName | Phillip |
71 | ″ | rdf:type | schema:Person |
72 | N1a3c288abe3e49a1a30d21a25c392551 | rdf:first | N14dd1b0e224f44c5bce425bcc47351a7 |
73 | ″ | rdf:rest | rdf:nil |
74 | N28f3581c017543939f2fc577a1ce37a2 | schema:name | doi |
75 | ″ | schema:value | 10.1007/978-3-642-22792-9_23 |
76 | ″ | rdf:type | schema:PropertyValue |
77 | N496db49bba984563b42817f89aade9b9 | schema:name | Springer Nature - SN SciGraph project |
78 | ″ | rdf:type | schema:Organization |
79 | Nb6829eb131004333bc369badb1a830ce | schema:name | dimensions_id |
80 | ″ | schema:value | pub.1001386016 |
81 | ″ | rdf:type | schema:PropertyValue |
82 | Nc98c16b8388f43819e0278721aa3bafb | schema:isbn | 978-3-642-22791-2 |
83 | ″ | ″ | 978-3-642-22792-9 |
84 | ″ | schema:name | Advances in Cryptology – CRYPTO 2011 |
85 | ″ | rdf:type | schema:Book |
86 | Nca3686e53de74822bf39730ede05c86e | rdf:first | sg:person.015062013354.78 |
87 | ″ | rdf:rest | rdf:nil |
88 | Nd50b57e06df147b998272f4e8dbeec32 | schema:name | Springer Nature |
89 | ″ | rdf:type | schema:Organisation |
90 | Nde5365d17af144488a3817d8e6be6188 | rdf:first | sg:person.012120220205.14 |
91 | ″ | rdf:rest | N048d106c5677481b96dfc120ebed7818 |
92 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
93 | ″ | schema:name | Physical Sciences |
94 | ″ | rdf:type | schema:DefinedTerm |
95 | anzsrc-for:0206 | schema:inDefinedTermSet | anzsrc-for: |
96 | ″ | schema:name | Quantum Physics |
97 | ″ | rdf:type | schema:DefinedTerm |
98 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
99 | ″ | schema:name | Information and Computing Sciences |
100 | ″ | rdf:type | schema:DefinedTerm |
101 | anzsrc-for:0802 | schema:inDefinedTermSet | anzsrc-for: |
102 | ″ | schema:name | Computation Theory and Mathematics |
103 | ″ | rdf:type | schema:DefinedTerm |
104 | anzsrc-for:0804 | schema:inDefinedTermSet | anzsrc-for: |
105 | ″ | schema:name | Data Format |
106 | ″ | rdf:type | schema:DefinedTerm |
107 | sg:person.012120220205.14 | schema:affiliation | grid-institutes:grid.29857.31 |
108 | ″ | schema:familyName | Hallgren |
109 | ″ | schema:givenName | Sean |
110 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012120220205.14 |
111 | ″ | rdf:type | schema:Person |
112 | sg:person.013307226666.21 | schema:affiliation | grid-institutes:grid.29857.31 |
113 | ″ | schema:familyName | Smith |
114 | ″ | schema:givenName | Adam |
115 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013307226666.21 |
116 | ″ | rdf:type | schema:Person |
117 | sg:person.015062013354.78 | schema:affiliation | grid-institutes:grid.29857.31 |
118 | ″ | schema:familyName | Song |
119 | ″ | schema:givenName | Fang |
120 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015062013354.78 |
121 | ″ | rdf:type | schema:Person |
122 | grid-institutes:grid.29857.31 | schema:alternateName | Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, U.S.A. |
123 | ″ | schema:name | Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, U.S.A. |
124 | ″ | rdf:type | schema:Organization |