Rule-Based Trust Assessment on the Semantic Web View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2011

AUTHORS

Ian Jacobi , Lalana Kagal , Ankesh Khandelwal

ABSTRACT

The Semantic Web is a decentralized forum on which anyone can publish structured data or extend and reuse existing data. This inherent openness of the Semantic Web raises questions about the trustworthiness of the data. Data is usually deemed trustworthy based on several factors including its source, users’ prior knowledge, the reputation of the source, and the previous experience of users. However, as rules are important on the Semantic Web for checking data integrity, representing implicit knowledge, or even defining policies, additional factors need to be considered for data that is inferred. Given an existing trust measure, we identify two trust axes namely data and rules and two trust categories namely content-based and metadata-based that are useful for trust assignments associated with Semantic Web data. We propose a meta-modeling framework that uses trust ontologies to assign trust values to data, sources, rules, etc. on the Web, provenance ontologies to capture data generation, and declarative rules to combine these values to form different trust assessment models. These trust assessment models can be used to transfer trust from known to unknown data. We discuss how AIR, a Web rule language, can be used to implement our framework and declaratively describe assessment models using different kinds of trust and provenance ontologies. More... »

PAGES

227-241

Book

TITLE

Rule-Based Reasoning, Programming, and Applications

ISBN

978-3-642-22545-1
978-3-642-22546-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-22546-8_18

DOI

http://dx.doi.org/10.1007/978-3-642-22546-8_18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030045232


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "MIT CSAIL, 02139, Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "MIT CSAIL, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jacobi", 
        "givenName": "Ian", 
        "id": "sg:person.012001750765.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012001750765.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MIT CSAIL, 02139, Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "MIT CSAIL, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kagal", 
        "givenName": "Lalana", 
        "id": "sg:person.013650411761.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013650411761.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rensselaer Polytechnic Institute, 12180, Troy, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.33647.35", 
          "name": [
            "Rensselaer Polytechnic Institute, 12180, Troy, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khandelwal", 
        "givenName": "Ankesh", 
        "id": "sg:person.012532222473.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012532222473.09"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "The Semantic Web is a decentralized forum on which anyone can publish structured data or extend and reuse existing data. This inherent openness of the Semantic Web raises questions about the trustworthiness of the data. Data is usually deemed trustworthy based on several factors including its source, users\u2019 prior knowledge, the reputation of the source, and the previous experience of users. However, as rules are important on the Semantic Web for checking data integrity, representing implicit knowledge, or even defining policies, additional factors need to be considered for data that is inferred. Given an existing trust measure, we identify two trust axes namely data and rules and two trust categories namely content-based and metadata-based that are useful for trust assignments associated with Semantic Web data. We propose a meta-modeling framework that uses trust ontologies to assign trust values to data, sources, rules, etc. on the Web, provenance ontologies to capture data generation, and declarative rules to combine these values to form different trust assessment models. These trust assessment models can be used to transfer trust from known to unknown data. We discuss how AIR, a Web rule language, can be used to implement our framework and declaratively describe assessment models using different kinds of trust and provenance ontologies.", 
    "editor": [
      {
        "familyName": "Bassiliades", 
        "givenName": "Nick", 
        "type": "Person"
      }, 
      {
        "familyName": "Governatori", 
        "givenName": "Guido", 
        "type": "Person"
      }, 
      {
        "familyName": "Paschke", 
        "givenName": "Adrian", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-22546-8_18", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-22545-1", 
        "978-3-642-22546-8"
      ], 
      "name": "Rule-Based Reasoning, Programming, and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "trust assessment model", 
      "Semantic Web", 
      "provenance ontology", 
      "Semantic Web data", 
      "Web Rule Language", 
      "meta-modeling framework", 
      "user's prior knowledge", 
      "prior knowledge", 
      "web data", 
      "trust ontology", 
      "trust value", 
      "declarative rules", 
      "structured data", 
      "rule language", 
      "trust assessment", 
      "data integrity", 
      "trust assignment", 
      "data generation", 
      "trust measures", 
      "inherent openness", 
      "unknown data", 
      "implicit knowledge", 
      "ontology", 
      "trust categories", 
      "assessment model", 
      "Web", 
      "rules", 
      "framework", 
      "different kinds", 
      "users", 
      "trust", 
      "trustworthiness", 
      "language", 
      "data", 
      "model", 
      "knowledge", 
      "previous experience", 
      "reputation", 
      "forum", 
      "assignment", 
      "kind", 
      "generation", 
      "source", 
      "openness", 
      "integrity", 
      "experience", 
      "categories", 
      "policy", 
      "measures", 
      "questions", 
      "values", 
      "assessment", 
      "axes", 
      "additional factors", 
      "factors", 
      "air"
    ], 
    "name": "Rule-Based Trust Assessment on the Semantic Web", 
    "pagination": "227-241", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030045232"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-22546-8_18"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-22546-8_18", 
      "https://app.dimensions.ai/details/publication/pub.1030045232"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_264.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-22546-8_18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22546-8_18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22546-8_18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22546-8_18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22546-8_18'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      23 PREDICATES      82 URIs      75 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-22546-8_18 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N8021f616cef6420d8565d16d7bc4a01c
4 schema:datePublished 2011
5 schema:datePublishedReg 2011-01-01
6 schema:description The Semantic Web is a decentralized forum on which anyone can publish structured data or extend and reuse existing data. This inherent openness of the Semantic Web raises questions about the trustworthiness of the data. Data is usually deemed trustworthy based on several factors including its source, users’ prior knowledge, the reputation of the source, and the previous experience of users. However, as rules are important on the Semantic Web for checking data integrity, representing implicit knowledge, or even defining policies, additional factors need to be considered for data that is inferred. Given an existing trust measure, we identify two trust axes namely data and rules and two trust categories namely content-based and metadata-based that are useful for trust assignments associated with Semantic Web data. We propose a meta-modeling framework that uses trust ontologies to assign trust values to data, sources, rules, etc. on the Web, provenance ontologies to capture data generation, and declarative rules to combine these values to form different trust assessment models. These trust assessment models can be used to transfer trust from known to unknown data. We discuss how AIR, a Web rule language, can be used to implement our framework and declaratively describe assessment models using different kinds of trust and provenance ontologies.
7 schema:editor N6bb6c09d4c7e4c70963a67184e72ef71
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N890927ebb78547889aa3d7ec81a4956a
12 schema:keywords Semantic Web
13 Semantic Web data
14 Web
15 Web Rule Language
16 additional factors
17 air
18 assessment
19 assessment model
20 assignment
21 axes
22 categories
23 data
24 data generation
25 data integrity
26 declarative rules
27 different kinds
28 experience
29 factors
30 forum
31 framework
32 generation
33 implicit knowledge
34 inherent openness
35 integrity
36 kind
37 knowledge
38 language
39 measures
40 meta-modeling framework
41 model
42 ontology
43 openness
44 policy
45 previous experience
46 prior knowledge
47 provenance ontology
48 questions
49 reputation
50 rule language
51 rules
52 source
53 structured data
54 trust
55 trust assessment
56 trust assessment model
57 trust assignment
58 trust categories
59 trust measures
60 trust ontology
61 trust value
62 trustworthiness
63 unknown data
64 user's prior knowledge
65 users
66 values
67 web data
68 schema:name Rule-Based Trust Assessment on the Semantic Web
69 schema:pagination 227-241
70 schema:productId N3917f3175f334b52ac6235ca6b01fd50
71 Nb44c3fe843e44f3ab5c2cbed42b5b03d
72 schema:publisher Nacda217997c0493886b2fbce6b2b2569
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030045232
74 https://doi.org/10.1007/978-3-642-22546-8_18
75 schema:sdDatePublished 2022-06-01T22:31
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher Nff64dd44b85948d194894d399efee2b1
78 schema:url https://doi.org/10.1007/978-3-642-22546-8_18
79 sgo:license sg:explorer/license/
80 sgo:sdDataset chapters
81 rdf:type schema:Chapter
82 N1e13453739e34ed78ee0f8b48bdccdcd rdf:first Na84f8dd7ebbf42d6bbaa1f8d8f31075e
83 rdf:rest rdf:nil
84 N263d00a91fc844309873ebe7378ec891 rdf:first sg:person.013650411761.05
85 rdf:rest N52241dd728394139aac4c6c3af9746be
86 N3917f3175f334b52ac6235ca6b01fd50 schema:name doi
87 schema:value 10.1007/978-3-642-22546-8_18
88 rdf:type schema:PropertyValue
89 N52241dd728394139aac4c6c3af9746be rdf:first sg:person.012532222473.09
90 rdf:rest rdf:nil
91 N5e908e487ae448e091273443dc844189 rdf:first Nb03546a40abb44ae9b625ad6adc28354
92 rdf:rest N1e13453739e34ed78ee0f8b48bdccdcd
93 N6bb6c09d4c7e4c70963a67184e72ef71 rdf:first N8756556e2c064066bc68c8e01d809d42
94 rdf:rest N5e908e487ae448e091273443dc844189
95 N8021f616cef6420d8565d16d7bc4a01c rdf:first sg:person.012001750765.63
96 rdf:rest N263d00a91fc844309873ebe7378ec891
97 N8756556e2c064066bc68c8e01d809d42 schema:familyName Bassiliades
98 schema:givenName Nick
99 rdf:type schema:Person
100 N890927ebb78547889aa3d7ec81a4956a schema:isbn 978-3-642-22545-1
101 978-3-642-22546-8
102 schema:name Rule-Based Reasoning, Programming, and Applications
103 rdf:type schema:Book
104 Na84f8dd7ebbf42d6bbaa1f8d8f31075e schema:familyName Paschke
105 schema:givenName Adrian
106 rdf:type schema:Person
107 Nacda217997c0493886b2fbce6b2b2569 schema:name Springer Nature
108 rdf:type schema:Organisation
109 Nb03546a40abb44ae9b625ad6adc28354 schema:familyName Governatori
110 schema:givenName Guido
111 rdf:type schema:Person
112 Nb44c3fe843e44f3ab5c2cbed42b5b03d schema:name dimensions_id
113 schema:value pub.1030045232
114 rdf:type schema:PropertyValue
115 Nff64dd44b85948d194894d399efee2b1 schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
118 schema:name Information and Computing Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
121 schema:name Information Systems
122 rdf:type schema:DefinedTerm
123 sg:person.012001750765.63 schema:affiliation grid-institutes:grid.116068.8
124 schema:familyName Jacobi
125 schema:givenName Ian
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012001750765.63
127 rdf:type schema:Person
128 sg:person.012532222473.09 schema:affiliation grid-institutes:grid.33647.35
129 schema:familyName Khandelwal
130 schema:givenName Ankesh
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012532222473.09
132 rdf:type schema:Person
133 sg:person.013650411761.05 schema:affiliation grid-institutes:grid.116068.8
134 schema:familyName Kagal
135 schema:givenName Lalana
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013650411761.05
137 rdf:type schema:Person
138 grid-institutes:grid.116068.8 schema:alternateName MIT CSAIL, 02139, Cambridge, MA, USA
139 schema:name MIT CSAIL, 02139, Cambridge, MA, USA
140 rdf:type schema:Organization
141 grid-institutes:grid.33647.35 schema:alternateName Rensselaer Polytechnic Institute, 12180, Troy, NY, USA
142 schema:name Rensselaer Polytechnic Institute, 12180, Troy, NY, USA
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...