Rule-Based Trust Assessment on the Semantic Web View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2011

AUTHORS

Ian Jacobi , Lalana Kagal , Ankesh Khandelwal

ABSTRACT

The Semantic Web is a decentralized forum on which anyone can publish structured data or extend and reuse existing data. This inherent openness of the Semantic Web raises questions about the trustworthiness of the data. Data is usually deemed trustworthy based on several factors including its source, users’ prior knowledge, the reputation of the source, and the previous experience of users. However, as rules are important on the Semantic Web for checking data integrity, representing implicit knowledge, or even defining policies, additional factors need to be considered for data that is inferred. Given an existing trust measure, we identify two trust axes namely data and rules and two trust categories namely content-based and metadata-based that are useful for trust assignments associated with Semantic Web data. We propose a meta-modeling framework that uses trust ontologies to assign trust values to data, sources, rules, etc. on the Web, provenance ontologies to capture data generation, and declarative rules to combine these values to form different trust assessment models. These trust assessment models can be used to transfer trust from known to unknown data. We discuss how AIR, a Web rule language, can be used to implement our framework and declaratively describe assessment models using different kinds of trust and provenance ontologies. More... »

PAGES

227-241

Book

TITLE

Rule-Based Reasoning, Programming, and Applications

ISBN

978-3-642-22545-1
978-3-642-22546-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-22546-8_18

DOI

http://dx.doi.org/10.1007/978-3-642-22546-8_18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030045232


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "MIT CSAIL, 02139, Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "MIT CSAIL, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jacobi", 
        "givenName": "Ian", 
        "id": "sg:person.012001750765.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012001750765.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MIT CSAIL, 02139, Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "MIT CSAIL, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kagal", 
        "givenName": "Lalana", 
        "id": "sg:person.013650411761.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013650411761.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rensselaer Polytechnic Institute, 12180, Troy, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.33647.35", 
          "name": [
            "Rensselaer Polytechnic Institute, 12180, Troy, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khandelwal", 
        "givenName": "Ankesh", 
        "id": "sg:person.012532222473.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012532222473.09"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "The Semantic Web is a decentralized forum on which anyone can publish structured data or extend and reuse existing data. This inherent openness of the Semantic Web raises questions about the trustworthiness of the data. Data is usually deemed trustworthy based on several factors including its source, users\u2019 prior knowledge, the reputation of the source, and the previous experience of users. However, as rules are important on the Semantic Web for checking data integrity, representing implicit knowledge, or even defining policies, additional factors need to be considered for data that is inferred. Given an existing trust measure, we identify two trust axes namely data and rules and two trust categories namely content-based and metadata-based that are useful for trust assignments associated with Semantic Web data. We propose a meta-modeling framework that uses trust ontologies to assign trust values to data, sources, rules, etc. on the Web, provenance ontologies to capture data generation, and declarative rules to combine these values to form different trust assessment models. These trust assessment models can be used to transfer trust from known to unknown data. We discuss how AIR, a Web rule language, can be used to implement our framework and declaratively describe assessment models using different kinds of trust and provenance ontologies.", 
    "editor": [
      {
        "familyName": "Bassiliades", 
        "givenName": "Nick", 
        "type": "Person"
      }, 
      {
        "familyName": "Governatori", 
        "givenName": "Guido", 
        "type": "Person"
      }, 
      {
        "familyName": "Paschke", 
        "givenName": "Adrian", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-22546-8_18", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-22545-1", 
        "978-3-642-22546-8"
      ], 
      "name": "Rule-Based Reasoning, Programming, and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "trust assessment model", 
      "Semantic Web", 
      "provenance ontology", 
      "Semantic Web data", 
      "Web Rule Language", 
      "meta-modeling framework", 
      "user's prior knowledge", 
      "prior knowledge", 
      "trust ontology", 
      "web data", 
      "trust value", 
      "declarative rules", 
      "structured data", 
      "rule language", 
      "trust assessment", 
      "data integrity", 
      "trust assignment", 
      "data generation", 
      "trust measures", 
      "inherent openness", 
      "unknown data", 
      "trust categories", 
      "implicit knowledge", 
      "ontology", 
      "assessment model", 
      "Web", 
      "rules", 
      "framework", 
      "different kinds", 
      "users", 
      "trust", 
      "trustworthiness", 
      "language", 
      "data", 
      "model", 
      "previous experience", 
      "knowledge", 
      "reputation", 
      "forum", 
      "assignment", 
      "kind", 
      "generation", 
      "source", 
      "openness", 
      "integrity", 
      "experience", 
      "categories", 
      "policy", 
      "measures", 
      "questions", 
      "values", 
      "assessment", 
      "axes", 
      "factors", 
      "additional factors", 
      "air"
    ], 
    "name": "Rule-Based Trust Assessment on the Semantic Web", 
    "pagination": "227-241", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030045232"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-22546-8_18"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-22546-8_18", 
      "https://app.dimensions.ai/details/publication/pub.1030045232"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-08-04T17:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/chapter/chapter_346.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-22546-8_18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22546-8_18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22546-8_18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22546-8_18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22546-8_18'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      22 PREDICATES      81 URIs      74 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-22546-8_18 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N34b44666059a4ef4a4ebbaac8f5ee245
4 schema:datePublished 2011
5 schema:datePublishedReg 2011-01-01
6 schema:description The Semantic Web is a decentralized forum on which anyone can publish structured data or extend and reuse existing data. This inherent openness of the Semantic Web raises questions about the trustworthiness of the data. Data is usually deemed trustworthy based on several factors including its source, users’ prior knowledge, the reputation of the source, and the previous experience of users. However, as rules are important on the Semantic Web for checking data integrity, representing implicit knowledge, or even defining policies, additional factors need to be considered for data that is inferred. Given an existing trust measure, we identify two trust axes namely data and rules and two trust categories namely content-based and metadata-based that are useful for trust assignments associated with Semantic Web data. We propose a meta-modeling framework that uses trust ontologies to assign trust values to data, sources, rules, etc. on the Web, provenance ontologies to capture data generation, and declarative rules to combine these values to form different trust assessment models. These trust assessment models can be used to transfer trust from known to unknown data. We discuss how AIR, a Web rule language, can be used to implement our framework and declaratively describe assessment models using different kinds of trust and provenance ontologies.
7 schema:editor Nd39713c0bd2c4a5b8e0d3bc5cad4ca45
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N9ba35fe43f6b458c86fb017d21e20431
11 schema:keywords Semantic Web
12 Semantic Web data
13 Web
14 Web Rule Language
15 additional factors
16 air
17 assessment
18 assessment model
19 assignment
20 axes
21 categories
22 data
23 data generation
24 data integrity
25 declarative rules
26 different kinds
27 experience
28 factors
29 forum
30 framework
31 generation
32 implicit knowledge
33 inherent openness
34 integrity
35 kind
36 knowledge
37 language
38 measures
39 meta-modeling framework
40 model
41 ontology
42 openness
43 policy
44 previous experience
45 prior knowledge
46 provenance ontology
47 questions
48 reputation
49 rule language
50 rules
51 source
52 structured data
53 trust
54 trust assessment
55 trust assessment model
56 trust assignment
57 trust categories
58 trust measures
59 trust ontology
60 trust value
61 trustworthiness
62 unknown data
63 user's prior knowledge
64 users
65 values
66 web data
67 schema:name Rule-Based Trust Assessment on the Semantic Web
68 schema:pagination 227-241
69 schema:productId N1a51987578ff480fa72d04ed1e36cd80
70 N75e8b22d9dfb4fae8eecf7be5b9431be
71 schema:publisher Ncbae4e52bd6442dfb60ccf848efd9b4d
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030045232
73 https://doi.org/10.1007/978-3-642-22546-8_18
74 schema:sdDatePublished 2022-08-04T17:18
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher Ne26209f00c9241a5a64effe291da3ce0
77 schema:url https://doi.org/10.1007/978-3-642-22546-8_18
78 sgo:license sg:explorer/license/
79 sgo:sdDataset chapters
80 rdf:type schema:Chapter
81 N0a1daf369739429388a62830214f42e0 schema:familyName Bassiliades
82 schema:givenName Nick
83 rdf:type schema:Person
84 N0c803a98678d45e4b356197638b4807f rdf:first N700a7df529c64ef79017d98e1effe5fe
85 rdf:rest Nf00d0b496785478a9dc6d034a3579545
86 N1a51987578ff480fa72d04ed1e36cd80 schema:name dimensions_id
87 schema:value pub.1030045232
88 rdf:type schema:PropertyValue
89 N2fcc4f776c8f40199989904e0eecb4f1 schema:familyName Paschke
90 schema:givenName Adrian
91 rdf:type schema:Person
92 N34b44666059a4ef4a4ebbaac8f5ee245 rdf:first sg:person.012001750765.63
93 rdf:rest N9806b691469b48f18d54b786f3447d3b
94 N700a7df529c64ef79017d98e1effe5fe schema:familyName Governatori
95 schema:givenName Guido
96 rdf:type schema:Person
97 N75e8b22d9dfb4fae8eecf7be5b9431be schema:name doi
98 schema:value 10.1007/978-3-642-22546-8_18
99 rdf:type schema:PropertyValue
100 N9806b691469b48f18d54b786f3447d3b rdf:first sg:person.013650411761.05
101 rdf:rest N9fd4ea473aeb401b9fe5a3cd7d1ea136
102 N9ba35fe43f6b458c86fb017d21e20431 schema:isbn 978-3-642-22545-1
103 978-3-642-22546-8
104 schema:name Rule-Based Reasoning, Programming, and Applications
105 rdf:type schema:Book
106 N9fd4ea473aeb401b9fe5a3cd7d1ea136 rdf:first sg:person.012532222473.09
107 rdf:rest rdf:nil
108 Ncbae4e52bd6442dfb60ccf848efd9b4d schema:name Springer Nature
109 rdf:type schema:Organisation
110 Nd39713c0bd2c4a5b8e0d3bc5cad4ca45 rdf:first N0a1daf369739429388a62830214f42e0
111 rdf:rest N0c803a98678d45e4b356197638b4807f
112 Ne26209f00c9241a5a64effe291da3ce0 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 Nf00d0b496785478a9dc6d034a3579545 rdf:first N2fcc4f776c8f40199989904e0eecb4f1
115 rdf:rest rdf:nil
116 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
117 schema:name Information and Computing Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
120 schema:name Information Systems
121 rdf:type schema:DefinedTerm
122 sg:person.012001750765.63 schema:affiliation grid-institutes:grid.116068.8
123 schema:familyName Jacobi
124 schema:givenName Ian
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012001750765.63
126 rdf:type schema:Person
127 sg:person.012532222473.09 schema:affiliation grid-institutes:grid.33647.35
128 schema:familyName Khandelwal
129 schema:givenName Ankesh
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012532222473.09
131 rdf:type schema:Person
132 sg:person.013650411761.05 schema:affiliation grid-institutes:grid.116068.8
133 schema:familyName Kagal
134 schema:givenName Lalana
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013650411761.05
136 rdf:type schema:Person
137 grid-institutes:grid.116068.8 schema:alternateName MIT CSAIL, 02139, Cambridge, MA, USA
138 schema:name MIT CSAIL, 02139, Cambridge, MA, USA
139 rdf:type schema:Organization
140 grid-institutes:grid.33647.35 schema:alternateName Rensselaer Polytechnic Institute, 12180, Troy, NY, USA
141 schema:name Rensselaer Polytechnic Institute, 12180, Troy, NY, USA
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...