Ontology type: schema:Chapter Open Access: True
2011
AUTHORSIan Jacobi , Lalana Kagal , Ankesh Khandelwal
ABSTRACTThe Semantic Web is a decentralized forum on which anyone can publish structured data or extend and reuse existing data. This inherent openness of the Semantic Web raises questions about the trustworthiness of the data. Data is usually deemed trustworthy based on several factors including its source, users’ prior knowledge, the reputation of the source, and the previous experience of users. However, as rules are important on the Semantic Web for checking data integrity, representing implicit knowledge, or even defining policies, additional factors need to be considered for data that is inferred. Given an existing trust measure, we identify two trust axes namely data and rules and two trust categories namely content-based and metadata-based that are useful for trust assignments associated with Semantic Web data. We propose a meta-modeling framework that uses trust ontologies to assign trust values to data, sources, rules, etc. on the Web, provenance ontologies to capture data generation, and declarative rules to combine these values to form different trust assessment models. These trust assessment models can be used to transfer trust from known to unknown data. We discuss how AIR, a Web rule language, can be used to implement our framework and declaratively describe assessment models using different kinds of trust and provenance ontologies. More... »
PAGES227-241
Rule-Based Reasoning, Programming, and Applications
ISBN
978-3-642-22545-1
978-3-642-22546-8
http://scigraph.springernature.com/pub.10.1007/978-3-642-22546-8_18
DOIhttp://dx.doi.org/10.1007/978-3-642-22546-8_18
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1030045232
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information Systems",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "MIT CSAIL, 02139, Cambridge, MA, USA",
"id": "http://www.grid.ac/institutes/grid.116068.8",
"name": [
"MIT CSAIL, 02139, Cambridge, MA, USA"
],
"type": "Organization"
},
"familyName": "Jacobi",
"givenName": "Ian",
"id": "sg:person.012001750765.63",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012001750765.63"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "MIT CSAIL, 02139, Cambridge, MA, USA",
"id": "http://www.grid.ac/institutes/grid.116068.8",
"name": [
"MIT CSAIL, 02139, Cambridge, MA, USA"
],
"type": "Organization"
},
"familyName": "Kagal",
"givenName": "Lalana",
"id": "sg:person.013650411761.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013650411761.05"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Rensselaer Polytechnic Institute, 12180, Troy, NY, USA",
"id": "http://www.grid.ac/institutes/grid.33647.35",
"name": [
"Rensselaer Polytechnic Institute, 12180, Troy, NY, USA"
],
"type": "Organization"
},
"familyName": "Khandelwal",
"givenName": "Ankesh",
"id": "sg:person.012532222473.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012532222473.09"
],
"type": "Person"
}
],
"datePublished": "2011",
"datePublishedReg": "2011-01-01",
"description": "The Semantic Web is a decentralized forum on which anyone can publish structured data or extend and reuse existing data. This inherent openness of the Semantic Web raises questions about the trustworthiness of the data. Data is usually deemed trustworthy based on several factors including its source, users\u2019 prior knowledge, the reputation of the source, and the previous experience of users. However, as rules are important on the Semantic Web for checking data integrity, representing implicit knowledge, or even defining policies, additional factors need to be considered for data that is inferred. Given an existing trust measure, we identify two trust axes namely data and rules and two trust categories namely content-based and metadata-based that are useful for trust assignments associated with Semantic Web data. We propose a meta-modeling framework that uses trust ontologies to assign trust values to data, sources, rules, etc. on the Web, provenance ontologies to capture data generation, and declarative rules to combine these values to form different trust assessment models. These trust assessment models can be used to transfer trust from known to unknown data. We discuss how AIR, a Web rule language, can be used to implement our framework and declaratively describe assessment models using different kinds of trust and provenance ontologies.",
"editor": [
{
"familyName": "Bassiliades",
"givenName": "Nick",
"type": "Person"
},
{
"familyName": "Governatori",
"givenName": "Guido",
"type": "Person"
},
{
"familyName": "Paschke",
"givenName": "Adrian",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-22546-8_18",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-642-22545-1",
"978-3-642-22546-8"
],
"name": "Rule-Based Reasoning, Programming, and Applications",
"type": "Book"
},
"keywords": [
"trust assessment model",
"Semantic Web",
"provenance ontology",
"Semantic Web data",
"Web Rule Language",
"meta-modeling framework",
"user's prior knowledge",
"prior knowledge",
"web data",
"trust ontology",
"trust value",
"declarative rules",
"structured data",
"rule language",
"trust assessment",
"data integrity",
"trust assignment",
"data generation",
"trust measures",
"inherent openness",
"unknown data",
"implicit knowledge",
"ontology",
"trust categories",
"assessment model",
"Web",
"rules",
"framework",
"different kinds",
"users",
"trust",
"trustworthiness",
"language",
"data",
"model",
"knowledge",
"previous experience",
"reputation",
"forum",
"assignment",
"kind",
"generation",
"source",
"openness",
"integrity",
"experience",
"categories",
"policy",
"measures",
"questions",
"values",
"assessment",
"axes",
"additional factors",
"factors",
"air"
],
"name": "Rule-Based Trust Assessment on the Semantic Web",
"pagination": "227-241",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1030045232"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-22546-8_18"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-22546-8_18",
"https://app.dimensions.ai/details/publication/pub.1030045232"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:31",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_264.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-22546-8_18"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22546-8_18'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22546-8_18'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22546-8_18'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22546-8_18'
This table displays all metadata directly associated to this object as RDF triples.
143 TRIPLES
23 PREDICATES
82 URIs
75 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-22546-8_18 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0806 |
3 | ″ | schema:author | N8021f616cef6420d8565d16d7bc4a01c |
4 | ″ | schema:datePublished | 2011 |
5 | ″ | schema:datePublishedReg | 2011-01-01 |
6 | ″ | schema:description | The Semantic Web is a decentralized forum on which anyone can publish structured data or extend and reuse existing data. This inherent openness of the Semantic Web raises questions about the trustworthiness of the data. Data is usually deemed trustworthy based on several factors including its source, users’ prior knowledge, the reputation of the source, and the previous experience of users. However, as rules are important on the Semantic Web for checking data integrity, representing implicit knowledge, or even defining policies, additional factors need to be considered for data that is inferred. Given an existing trust measure, we identify two trust axes namely data and rules and two trust categories namely content-based and metadata-based that are useful for trust assignments associated with Semantic Web data. We propose a meta-modeling framework that uses trust ontologies to assign trust values to data, sources, rules, etc. on the Web, provenance ontologies to capture data generation, and declarative rules to combine these values to form different trust assessment models. These trust assessment models can be used to transfer trust from known to unknown data. We discuss how AIR, a Web rule language, can be used to implement our framework and declaratively describe assessment models using different kinds of trust and provenance ontologies. |
7 | ″ | schema:editor | N6bb6c09d4c7e4c70963a67184e72ef71 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | N890927ebb78547889aa3d7ec81a4956a |
12 | ″ | schema:keywords | Semantic Web |
13 | ″ | ″ | Semantic Web data |
14 | ″ | ″ | Web |
15 | ″ | ″ | Web Rule Language |
16 | ″ | ″ | additional factors |
17 | ″ | ″ | air |
18 | ″ | ″ | assessment |
19 | ″ | ″ | assessment model |
20 | ″ | ″ | assignment |
21 | ″ | ″ | axes |
22 | ″ | ″ | categories |
23 | ″ | ″ | data |
24 | ″ | ″ | data generation |
25 | ″ | ″ | data integrity |
26 | ″ | ″ | declarative rules |
27 | ″ | ″ | different kinds |
28 | ″ | ″ | experience |
29 | ″ | ″ | factors |
30 | ″ | ″ | forum |
31 | ″ | ″ | framework |
32 | ″ | ″ | generation |
33 | ″ | ″ | implicit knowledge |
34 | ″ | ″ | inherent openness |
35 | ″ | ″ | integrity |
36 | ″ | ″ | kind |
37 | ″ | ″ | knowledge |
38 | ″ | ″ | language |
39 | ″ | ″ | measures |
40 | ″ | ″ | meta-modeling framework |
41 | ″ | ″ | model |
42 | ″ | ″ | ontology |
43 | ″ | ″ | openness |
44 | ″ | ″ | policy |
45 | ″ | ″ | previous experience |
46 | ″ | ″ | prior knowledge |
47 | ″ | ″ | provenance ontology |
48 | ″ | ″ | questions |
49 | ″ | ″ | reputation |
50 | ″ | ″ | rule language |
51 | ″ | ″ | rules |
52 | ″ | ″ | source |
53 | ″ | ″ | structured data |
54 | ″ | ″ | trust |
55 | ″ | ″ | trust assessment |
56 | ″ | ″ | trust assessment model |
57 | ″ | ″ | trust assignment |
58 | ″ | ″ | trust categories |
59 | ″ | ″ | trust measures |
60 | ″ | ″ | trust ontology |
61 | ″ | ″ | trust value |
62 | ″ | ″ | trustworthiness |
63 | ″ | ″ | unknown data |
64 | ″ | ″ | user's prior knowledge |
65 | ″ | ″ | users |
66 | ″ | ″ | values |
67 | ″ | ″ | web data |
68 | ″ | schema:name | Rule-Based Trust Assessment on the Semantic Web |
69 | ″ | schema:pagination | 227-241 |
70 | ″ | schema:productId | N3917f3175f334b52ac6235ca6b01fd50 |
71 | ″ | ″ | Nb44c3fe843e44f3ab5c2cbed42b5b03d |
72 | ″ | schema:publisher | Nacda217997c0493886b2fbce6b2b2569 |
73 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1030045232 |
74 | ″ | ″ | https://doi.org/10.1007/978-3-642-22546-8_18 |
75 | ″ | schema:sdDatePublished | 2022-06-01T22:31 |
76 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
77 | ″ | schema:sdPublisher | Nff64dd44b85948d194894d399efee2b1 |
78 | ″ | schema:url | https://doi.org/10.1007/978-3-642-22546-8_18 |
79 | ″ | sgo:license | sg:explorer/license/ |
80 | ″ | sgo:sdDataset | chapters |
81 | ″ | rdf:type | schema:Chapter |
82 | N1e13453739e34ed78ee0f8b48bdccdcd | rdf:first | Na84f8dd7ebbf42d6bbaa1f8d8f31075e |
83 | ″ | rdf:rest | rdf:nil |
84 | N263d00a91fc844309873ebe7378ec891 | rdf:first | sg:person.013650411761.05 |
85 | ″ | rdf:rest | N52241dd728394139aac4c6c3af9746be |
86 | N3917f3175f334b52ac6235ca6b01fd50 | schema:name | doi |
87 | ″ | schema:value | 10.1007/978-3-642-22546-8_18 |
88 | ″ | rdf:type | schema:PropertyValue |
89 | N52241dd728394139aac4c6c3af9746be | rdf:first | sg:person.012532222473.09 |
90 | ″ | rdf:rest | rdf:nil |
91 | N5e908e487ae448e091273443dc844189 | rdf:first | Nb03546a40abb44ae9b625ad6adc28354 |
92 | ″ | rdf:rest | N1e13453739e34ed78ee0f8b48bdccdcd |
93 | N6bb6c09d4c7e4c70963a67184e72ef71 | rdf:first | N8756556e2c064066bc68c8e01d809d42 |
94 | ″ | rdf:rest | N5e908e487ae448e091273443dc844189 |
95 | N8021f616cef6420d8565d16d7bc4a01c | rdf:first | sg:person.012001750765.63 |
96 | ″ | rdf:rest | N263d00a91fc844309873ebe7378ec891 |
97 | N8756556e2c064066bc68c8e01d809d42 | schema:familyName | Bassiliades |
98 | ″ | schema:givenName | Nick |
99 | ″ | rdf:type | schema:Person |
100 | N890927ebb78547889aa3d7ec81a4956a | schema:isbn | 978-3-642-22545-1 |
101 | ″ | ″ | 978-3-642-22546-8 |
102 | ″ | schema:name | Rule-Based Reasoning, Programming, and Applications |
103 | ″ | rdf:type | schema:Book |
104 | Na84f8dd7ebbf42d6bbaa1f8d8f31075e | schema:familyName | Paschke |
105 | ″ | schema:givenName | Adrian |
106 | ″ | rdf:type | schema:Person |
107 | Nacda217997c0493886b2fbce6b2b2569 | schema:name | Springer Nature |
108 | ″ | rdf:type | schema:Organisation |
109 | Nb03546a40abb44ae9b625ad6adc28354 | schema:familyName | Governatori |
110 | ″ | schema:givenName | Guido |
111 | ″ | rdf:type | schema:Person |
112 | Nb44c3fe843e44f3ab5c2cbed42b5b03d | schema:name | dimensions_id |
113 | ″ | schema:value | pub.1030045232 |
114 | ″ | rdf:type | schema:PropertyValue |
115 | Nff64dd44b85948d194894d399efee2b1 | schema:name | Springer Nature - SN SciGraph project |
116 | ″ | rdf:type | schema:Organization |
117 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
118 | ″ | schema:name | Information and Computing Sciences |
119 | ″ | rdf:type | schema:DefinedTerm |
120 | anzsrc-for:0806 | schema:inDefinedTermSet | anzsrc-for: |
121 | ″ | schema:name | Information Systems |
122 | ″ | rdf:type | schema:DefinedTerm |
123 | sg:person.012001750765.63 | schema:affiliation | grid-institutes:grid.116068.8 |
124 | ″ | schema:familyName | Jacobi |
125 | ″ | schema:givenName | Ian |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012001750765.63 |
127 | ″ | rdf:type | schema:Person |
128 | sg:person.012532222473.09 | schema:affiliation | grid-institutes:grid.33647.35 |
129 | ″ | schema:familyName | Khandelwal |
130 | ″ | schema:givenName | Ankesh |
131 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012532222473.09 |
132 | ″ | rdf:type | schema:Person |
133 | sg:person.013650411761.05 | schema:affiliation | grid-institutes:grid.116068.8 |
134 | ″ | schema:familyName | Kagal |
135 | ″ | schema:givenName | Lalana |
136 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013650411761.05 |
137 | ″ | rdf:type | schema:Person |
138 | grid-institutes:grid.116068.8 | schema:alternateName | MIT CSAIL, 02139, Cambridge, MA, USA |
139 | ″ | schema:name | MIT CSAIL, 02139, Cambridge, MA, USA |
140 | ″ | rdf:type | schema:Organization |
141 | grid-institutes:grid.33647.35 | schema:alternateName | Rensselaer Polytechnic Institute, 12180, Troy, NY, USA |
142 | ″ | schema:name | Rensselaer Polytechnic Institute, 12180, Troy, NY, USA |
143 | ″ | rdf:type | schema:Organization |