Context-Aware Parameter Estimation for Forecast Models in the Energy Domain View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Lars Dannecker , Robert Schulze , Matthias Böhm , Wolfgang Lehner , Gregor Hackenbroich

ABSTRACT

Continuous balancing of energy demand and supply is a fundamental prerequisite for the stability and efficiency of energy grids. This balancing task requires accurate forecasts of future electricity consumption and production at any point in time. For this purpose, database systems need to be able to rapidly process forecasting queries and to provide accurate results in short time frames. However, time series from the electricity domain pose the challenge that measurements are constantly appended to the time series. Using a naive maintenance approach for such evolving time series would mean a re-estimation of the employed mathematical forecast model from scratch for each new measurement, which is very time consuming. We speed-up the forecast model maintenance by exploiting the particularities of electricity time series to reuse previously employed forecast models and their parameter combinations. These parameter combinations and information about the context in which they were valid are stored in a repository. We compare the current context with contexts from the repository to retrieve parameter combinations that were valid in similar contexts as starting points for further optimization. An evaluation shows that our approach improves the maintenance process especially for complex models by providing more accurate forecasts in less time than comparable estimation methods. More... »

PAGES

491-508

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-22351-8_33

DOI

http://dx.doi.org/10.1007/978-3-642-22351-8_33

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020860306


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "SAP Research Dresden, Chemnitzer Str. 48, 01187, Dresden, Germany", 
          "id": "http://www.grid.ac/institutes/grid.19008.30", 
          "name": [
            "SAP Research Dresden, Chemnitzer Str. 48, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dannecker", 
        "givenName": "Lars", 
        "id": "sg:person.016070302115.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016070302115.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "SAP Research Dresden, Chemnitzer Str. 48, 01187, Dresden, Germany", 
          "id": "http://www.grid.ac/institutes/grid.19008.30", 
          "name": [
            "SAP Research Dresden, Chemnitzer Str. 48, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schulze", 
        "givenName": "Robert", 
        "id": "sg:person.010166452415.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010166452415.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Database Technology Group, Technische Universit\u00e4t Dresden, N\u00f6thnitzer Str. 46, 01187, Dresden, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4488.0", 
          "name": [
            "Database Technology Group, Technische Universit\u00e4t Dresden, N\u00f6thnitzer Str. 46, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00f6hm", 
        "givenName": "Matthias", 
        "id": "sg:person.012356774015.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012356774015.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Database Technology Group, Technische Universit\u00e4t Dresden, N\u00f6thnitzer Str. 46, 01187, Dresden, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4488.0", 
          "name": [
            "Database Technology Group, Technische Universit\u00e4t Dresden, N\u00f6thnitzer Str. 46, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lehner", 
        "givenName": "Wolfgang", 
        "id": "sg:person.014174244741.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014174244741.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "SAP Research Dresden, Chemnitzer Str. 48, 01187, Dresden, Germany", 
          "id": "http://www.grid.ac/institutes/grid.19008.30", 
          "name": [
            "SAP Research Dresden, Chemnitzer Str. 48, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hackenbroich", 
        "givenName": "Gregor", 
        "id": "sg:person.012241057077.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012241057077.14"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "Continuous balancing of energy demand and supply is a fundamental prerequisite for the stability and efficiency of energy grids. This balancing task requires accurate forecasts of future electricity consumption and production at any point in time. For this purpose, database systems need to be able to rapidly process forecasting queries and to provide accurate results in short time frames. However, time series from the electricity domain pose the challenge that measurements are constantly appended to the time series. Using a naive maintenance approach for such evolving time series would mean a re-estimation of the employed mathematical forecast model from scratch for each new measurement, which is very time consuming. We speed-up the forecast model maintenance by exploiting the particularities of electricity time series to reuse previously employed forecast models and their parameter combinations. These parameter combinations and information about the context in which they were valid are stored in a repository. We compare the current context with contexts from the repository to retrieve parameter combinations that were valid in similar contexts as starting points for further optimization. An evaluation shows that our approach improves the maintenance process especially for complex models by providing more accurate forecasts in less time than comparable estimation methods.", 
    "editor": [
      {
        "familyName": "Bayard Cushing", 
        "givenName": "Judith", 
        "type": "Person"
      }, 
      {
        "familyName": "French", 
        "givenName": "James", 
        "type": "Person"
      }, 
      {
        "familyName": "Bowers", 
        "givenName": "Shawn", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-22351-8_33", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-22350-1", 
        "978-3-642-22351-8"
      ], 
      "name": "Scientific and Statistical Database Management", 
      "type": "Book"
    }, 
    "keywords": [
      "accurate forecasts", 
      "time series", 
      "mathematical forecast model", 
      "more accurate forecasts", 
      "electricity time series", 
      "forecast model", 
      "future electricity consumption", 
      "electricity consumption", 
      "electricity domain", 
      "forecasts", 
      "estimation method", 
      "energy demand", 
      "parameter combinations", 
      "continuous balancing", 
      "parameter estimation", 
      "database systems", 
      "model maintenance", 
      "current context", 
      "model", 
      "demand", 
      "energy grid", 
      "supply", 
      "complex models", 
      "maintenance process", 
      "context", 
      "similar contexts", 
      "time frame", 
      "maintenance approach", 
      "accurate results", 
      "repository", 
      "short time frame", 
      "consumption", 
      "energy domain", 
      "fundamental prerequisite", 
      "estimation", 
      "queries", 
      "approach", 
      "series", 
      "less time", 
      "new measurements", 
      "efficiency", 
      "purpose", 
      "optimization", 
      "task", 
      "scratch", 
      "balancing", 
      "domain", 
      "particularities", 
      "grid", 
      "point", 
      "prerequisite", 
      "information", 
      "production", 
      "time", 
      "further optimization", 
      "frame", 
      "challenges", 
      "results", 
      "measurements", 
      "system", 
      "speed", 
      "stability", 
      "method", 
      "evaluation", 
      "combination", 
      "process", 
      "maintenance"
    ], 
    "name": "Context-Aware Parameter Estimation for Forecast Models in the Energy Domain", 
    "pagination": "491-508", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020860306"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-22351-8_33"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-22351-8_33", 
      "https://app.dimensions.ai/details/publication/pub.1020860306"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_179.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-22351-8_33"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22351-8_33'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22351-8_33'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22351-8_33'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22351-8_33'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      22 PREDICATES      95 URIs      85 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-22351-8_33 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0104
4 anzsrc-for:14
5 anzsrc-for:1403
6 schema:author N3103998021d14d46aaffe4d7e937b7f3
7 schema:datePublished 2011
8 schema:datePublishedReg 2011-01-01
9 schema:description Continuous balancing of energy demand and supply is a fundamental prerequisite for the stability and efficiency of energy grids. This balancing task requires accurate forecasts of future electricity consumption and production at any point in time. For this purpose, database systems need to be able to rapidly process forecasting queries and to provide accurate results in short time frames. However, time series from the electricity domain pose the challenge that measurements are constantly appended to the time series. Using a naive maintenance approach for such evolving time series would mean a re-estimation of the employed mathematical forecast model from scratch for each new measurement, which is very time consuming. We speed-up the forecast model maintenance by exploiting the particularities of electricity time series to reuse previously employed forecast models and their parameter combinations. These parameter combinations and information about the context in which they were valid are stored in a repository. We compare the current context with contexts from the repository to retrieve parameter combinations that were valid in similar contexts as starting points for further optimization. An evaluation shows that our approach improves the maintenance process especially for complex models by providing more accurate forecasts in less time than comparable estimation methods.
10 schema:editor Na479a8d473b7490d8bd9d5a90f54887e
11 schema:genre chapter
12 schema:isAccessibleForFree false
13 schema:isPartOf Na31b43b53b7a451b9a3019cf859c0b4c
14 schema:keywords accurate forecasts
15 accurate results
16 approach
17 balancing
18 challenges
19 combination
20 complex models
21 consumption
22 context
23 continuous balancing
24 current context
25 database systems
26 demand
27 domain
28 efficiency
29 electricity consumption
30 electricity domain
31 electricity time series
32 energy demand
33 energy domain
34 energy grid
35 estimation
36 estimation method
37 evaluation
38 forecast model
39 forecasts
40 frame
41 fundamental prerequisite
42 further optimization
43 future electricity consumption
44 grid
45 information
46 less time
47 maintenance
48 maintenance approach
49 maintenance process
50 mathematical forecast model
51 measurements
52 method
53 model
54 model maintenance
55 more accurate forecasts
56 new measurements
57 optimization
58 parameter combinations
59 parameter estimation
60 particularities
61 point
62 prerequisite
63 process
64 production
65 purpose
66 queries
67 repository
68 results
69 scratch
70 series
71 short time frame
72 similar contexts
73 speed
74 stability
75 supply
76 system
77 task
78 time
79 time frame
80 time series
81 schema:name Context-Aware Parameter Estimation for Forecast Models in the Energy Domain
82 schema:pagination 491-508
83 schema:productId N0a50d75e4bc248b593c2798164d01dd4
84 Ne1a94f3985e0478ebe732cec2fd1c02e
85 schema:publisher N615fcfca13db47efbdfba569d246b01f
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020860306
87 https://doi.org/10.1007/978-3-642-22351-8_33
88 schema:sdDatePublished 2022-12-01T06:48
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N4dac9a3685bc4c429708d69969f3ad01
91 schema:url https://doi.org/10.1007/978-3-642-22351-8_33
92 sgo:license sg:explorer/license/
93 sgo:sdDataset chapters
94 rdf:type schema:Chapter
95 N0a50d75e4bc248b593c2798164d01dd4 schema:name dimensions_id
96 schema:value pub.1020860306
97 rdf:type schema:PropertyValue
98 N163ea1b884844930b33c1f81f64837a4 rdf:first sg:person.010166452415.72
99 rdf:rest N5f86674ef7314ea5ab9f722418e9f6fe
100 N3103998021d14d46aaffe4d7e937b7f3 rdf:first sg:person.016070302115.81
101 rdf:rest N163ea1b884844930b33c1f81f64837a4
102 N4dac9a3685bc4c429708d69969f3ad01 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N53cdd99d9ee74930a4c591e83767610b schema:familyName French
105 schema:givenName James
106 rdf:type schema:Person
107 N5f86674ef7314ea5ab9f722418e9f6fe rdf:first sg:person.012356774015.77
108 rdf:rest Ndc9b0e6cf10546d183fb35eb3b4c774d
109 N615fcfca13db47efbdfba569d246b01f schema:name Springer Nature
110 rdf:type schema:Organisation
111 N6e901add4d3044ad9ac78b6e665bad9d schema:familyName Bowers
112 schema:givenName Shawn
113 rdf:type schema:Person
114 N7dd105b47d8147c1a4b3bdc997146d01 schema:familyName Bayard Cushing
115 schema:givenName Judith
116 rdf:type schema:Person
117 Na31b43b53b7a451b9a3019cf859c0b4c schema:isbn 978-3-642-22350-1
118 978-3-642-22351-8
119 schema:name Scientific and Statistical Database Management
120 rdf:type schema:Book
121 Na3bc2174c1bd4d3ea70f636e5cf44cf7 rdf:first N6e901add4d3044ad9ac78b6e665bad9d
122 rdf:rest rdf:nil
123 Na479a8d473b7490d8bd9d5a90f54887e rdf:first N7dd105b47d8147c1a4b3bdc997146d01
124 rdf:rest Nd5c66b03436544f28a965842e89a09a3
125 Nd3d52730ab9e40e19cae4f9aa217ac5a rdf:first sg:person.012241057077.14
126 rdf:rest rdf:nil
127 Nd5c66b03436544f28a965842e89a09a3 rdf:first N53cdd99d9ee74930a4c591e83767610b
128 rdf:rest Na3bc2174c1bd4d3ea70f636e5cf44cf7
129 Ndc9b0e6cf10546d183fb35eb3b4c774d rdf:first sg:person.014174244741.81
130 rdf:rest Nd3d52730ab9e40e19cae4f9aa217ac5a
131 Ne1a94f3985e0478ebe732cec2fd1c02e schema:name doi
132 schema:value 10.1007/978-3-642-22351-8_33
133 rdf:type schema:PropertyValue
134 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
135 schema:name Mathematical Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
138 schema:name Applied Mathematics
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
141 schema:name Statistics
142 rdf:type schema:DefinedTerm
143 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
144 schema:name Economics
145 rdf:type schema:DefinedTerm
146 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
147 schema:name Econometrics
148 rdf:type schema:DefinedTerm
149 sg:person.010166452415.72 schema:affiliation grid-institutes:grid.19008.30
150 schema:familyName Schulze
151 schema:givenName Robert
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010166452415.72
153 rdf:type schema:Person
154 sg:person.012241057077.14 schema:affiliation grid-institutes:grid.19008.30
155 schema:familyName Hackenbroich
156 schema:givenName Gregor
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012241057077.14
158 rdf:type schema:Person
159 sg:person.012356774015.77 schema:affiliation grid-institutes:grid.4488.0
160 schema:familyName Böhm
161 schema:givenName Matthias
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012356774015.77
163 rdf:type schema:Person
164 sg:person.014174244741.81 schema:affiliation grid-institutes:grid.4488.0
165 schema:familyName Lehner
166 schema:givenName Wolfgang
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014174244741.81
168 rdf:type schema:Person
169 sg:person.016070302115.81 schema:affiliation grid-institutes:grid.19008.30
170 schema:familyName Dannecker
171 schema:givenName Lars
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016070302115.81
173 rdf:type schema:Person
174 grid-institutes:grid.19008.30 schema:alternateName SAP Research Dresden, Chemnitzer Str. 48, 01187, Dresden, Germany
175 schema:name SAP Research Dresden, Chemnitzer Str. 48, 01187, Dresden, Germany
176 rdf:type schema:Organization
177 grid-institutes:grid.4488.0 schema:alternateName Database Technology Group, Technische Universität Dresden, Nöthnitzer Str. 46, 01187, Dresden, Germany
178 schema:name Database Technology Group, Technische Universität Dresden, Nöthnitzer Str. 46, 01187, Dresden, Germany
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...