Automatic Verbalisation of SNOMED Classes Using OntoVerbal View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Shao Fen Liang , Robert Stevens , Donia Scott , Alan Rector

ABSTRACT

SNOMED is a large description logic based terminology for recording in electronic health records. Often, neither the labels nor the description logic definitions are easy for users to understand. Furthermore, information is increasingly being recorded not just using individual SNOMED concepts but also using complex expressions in the description logic (“post-coordinated” concepts). Such post-coordinated expressions are likely to be even more complex than other definitions, and therefore can have no pre-assigned labels. Automatic verbalisation will be useful both for understanding and quality assurance of SNOMED definitions, and for helping users to understand post-coordinated expressions. OntoVerbal is a system that presents a compositional terminology expressed in OWL as natural language. We describe the application of OntoVerbal to SNOMED-CT, whereby SNOMED classes are presented as textual paragraphs through the use of natural language generation technology. More... »

PAGES

338-342

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-22218-4_43

DOI

http://dx.doi.org/10.1007/978-3-642-22218-4_43

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009447475


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Computer Science, University of Manchester, Oxford Road, M13 9PL, Manchester, UK", 
          "id": "http://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "School of Computer Science, University of Manchester, Oxford Road, M13 9PL, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Shao Fen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Computer Science, University of Manchester, Oxford Road, M13 9PL, Manchester, UK", 
          "id": "http://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "School of Computer Science, University of Manchester, Oxford Road, M13 9PL, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stevens", 
        "givenName": "Robert", 
        "id": "sg:person.0653547307.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653547307.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Informatics, University of Sussex, Falmer, BN1 9QH, Brighton, UK", 
          "id": "http://www.grid.ac/institutes/grid.12082.39", 
          "name": [
            "School of Informatics, University of Sussex, Falmer, BN1 9QH, Brighton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scott", 
        "givenName": "Donia", 
        "id": "sg:person.014567324417.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014567324417.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Computer Science, University of Manchester, Oxford Road, M13 9PL, Manchester, UK", 
          "id": "http://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "School of Computer Science, University of Manchester, Oxford Road, M13 9PL, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rector", 
        "givenName": "Alan", 
        "id": "sg:person.01236476746.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236476746.78"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "SNOMED is a large description logic based terminology for recording in electronic health records. Often, neither the labels nor the description logic definitions are easy for users to understand. Furthermore, information is increasingly being recorded not just using individual SNOMED concepts but also using complex expressions in the description logic (\u201cpost-coordinated\u201d concepts). Such post-coordinated expressions are likely to be even more complex than other definitions, and therefore can have no pre-assigned labels. Automatic verbalisation will be useful both for understanding and quality assurance of SNOMED definitions, and for helping users to understand post-coordinated expressions. OntoVerbal is a system that presents a compositional terminology expressed in OWL as natural language. We describe the application of OntoVerbal to SNOMED-CT, whereby SNOMED classes are presented as textual paragraphs through the use of natural language generation technology.", 
    "editor": [
      {
        "familyName": "Peleg", 
        "givenName": "Mor", 
        "type": "Person"
      }, 
      {
        "familyName": "Lavra\u010d", 
        "givenName": "Nada", 
        "type": "Person"
      }, 
      {
        "familyName": "Combi", 
        "givenName": "Carlo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-22218-4_43", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-22217-7", 
        "978-3-642-22218-4"
      ], 
      "name": "Artificial Intelligence in Medicine", 
      "type": "Book"
    }, 
    "keywords": [
      "post-coordinated expressions", 
      "description logics", 
      "natural language generation technology", 
      "pre-assigned labels", 
      "SNOMED-CT", 
      "textual paragraphs", 
      "electronic health records", 
      "natural language", 
      "logic definition", 
      "compositional terminology", 
      "description logic definitions", 
      "health records", 
      "SNOMED concepts", 
      "users", 
      "logic", 
      "generation technologies", 
      "quality assurance", 
      "SNOMED", 
      "labels", 
      "owls", 
      "language", 
      "definition", 
      "technology", 
      "information", 
      "assurance", 
      "terminology", 
      "applications", 
      "complex expression", 
      "class", 
      "system", 
      "verbalisation", 
      "concept", 
      "paragraph", 
      "use", 
      "records", 
      "understanding", 
      "expression", 
      "large description logic", 
      "individual SNOMED concepts", 
      "Such post-coordinated expressions", 
      "Automatic verbalisation", 
      "SNOMED definitions", 
      "OntoVerbal", 
      "application of OntoVerbal", 
      "SNOMED classes", 
      "language generation technology"
    ], 
    "name": "Automatic Verbalisation of SNOMED Classes Using OntoVerbal", 
    "pagination": "338-342", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009447475"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-22218-4_43"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-22218-4_43", 
      "https://app.dimensions.ai/details/publication/pub.1009447475"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_288.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-22218-4_43"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22218-4_43'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22218-4_43'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22218-4_43'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22218-4_43'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      23 PREDICATES      72 URIs      65 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-22218-4_43 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd162bf22b5cf4501a41f31d8ecc0f169
4 schema:datePublished 2011
5 schema:datePublishedReg 2011-01-01
6 schema:description SNOMED is a large description logic based terminology for recording in electronic health records. Often, neither the labels nor the description logic definitions are easy for users to understand. Furthermore, information is increasingly being recorded not just using individual SNOMED concepts but also using complex expressions in the description logic (“post-coordinated” concepts). Such post-coordinated expressions are likely to be even more complex than other definitions, and therefore can have no pre-assigned labels. Automatic verbalisation will be useful both for understanding and quality assurance of SNOMED definitions, and for helping users to understand post-coordinated expressions. OntoVerbal is a system that presents a compositional terminology expressed in OWL as natural language. We describe the application of OntoVerbal to SNOMED-CT, whereby SNOMED classes are presented as textual paragraphs through the use of natural language generation technology.
7 schema:editor N5a9649b36b72497eb485fc3d5fa97c01
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N6f49e4c9adf04bac9c9e88fb9765aec7
12 schema:keywords Automatic verbalisation
13 OntoVerbal
14 SNOMED
15 SNOMED classes
16 SNOMED concepts
17 SNOMED definitions
18 SNOMED-CT
19 Such post-coordinated expressions
20 application of OntoVerbal
21 applications
22 assurance
23 class
24 complex expression
25 compositional terminology
26 concept
27 definition
28 description logic definitions
29 description logics
30 electronic health records
31 expression
32 generation technologies
33 health records
34 individual SNOMED concepts
35 information
36 labels
37 language
38 language generation technology
39 large description logic
40 logic
41 logic definition
42 natural language
43 natural language generation technology
44 owls
45 paragraph
46 post-coordinated expressions
47 pre-assigned labels
48 quality assurance
49 records
50 system
51 technology
52 terminology
53 textual paragraphs
54 understanding
55 use
56 users
57 verbalisation
58 schema:name Automatic Verbalisation of SNOMED Classes Using OntoVerbal
59 schema:pagination 338-342
60 schema:productId N45bc4ec9a35b46d78603af594721663b
61 N9ba6075f5af5482297a0d1dd410596e3
62 schema:publisher Nf92bb2f028744c1985fb2ffed2d49a3a
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009447475
64 https://doi.org/10.1007/978-3-642-22218-4_43
65 schema:sdDatePublished 2021-11-01T18:54
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher Nae78dc0b597f45e5b14b953325ca0e4c
68 schema:url https://doi.org/10.1007/978-3-642-22218-4_43
69 sgo:license sg:explorer/license/
70 sgo:sdDataset chapters
71 rdf:type schema:Chapter
72 N1fb7045ba6c4405ab489724e7cd8d8fa schema:familyName Combi
73 schema:givenName Carlo
74 rdf:type schema:Person
75 N361f99bbce794a42a4344455a4aaff06 schema:familyName Lavrač
76 schema:givenName Nada
77 rdf:type schema:Person
78 N45bc4ec9a35b46d78603af594721663b schema:name dimensions_id
79 schema:value pub.1009447475
80 rdf:type schema:PropertyValue
81 N4bdb3966649f46868f09ff0b94167ba3 rdf:first sg:person.0653547307.62
82 rdf:rest N6d521cc17c0d48eab69f2a03b1aea13c
83 N4ca55f6589614fab89af3d62ac2ac19b rdf:first N1fb7045ba6c4405ab489724e7cd8d8fa
84 rdf:rest rdf:nil
85 N5a9649b36b72497eb485fc3d5fa97c01 rdf:first N8546885751f948ad9eb3c1ebd0de23bf
86 rdf:rest Nef2f38548ca94b6cb613353061892336
87 N6d521cc17c0d48eab69f2a03b1aea13c rdf:first sg:person.014567324417.64
88 rdf:rest Na1aa0839fdda42129e8efa624b54585d
89 N6f49e4c9adf04bac9c9e88fb9765aec7 schema:isbn 978-3-642-22217-7
90 978-3-642-22218-4
91 schema:name Artificial Intelligence in Medicine
92 rdf:type schema:Book
93 N8546885751f948ad9eb3c1ebd0de23bf schema:familyName Peleg
94 schema:givenName Mor
95 rdf:type schema:Person
96 N9ba6075f5af5482297a0d1dd410596e3 schema:name doi
97 schema:value 10.1007/978-3-642-22218-4_43
98 rdf:type schema:PropertyValue
99 Na1aa0839fdda42129e8efa624b54585d rdf:first sg:person.01236476746.78
100 rdf:rest rdf:nil
101 Nae78dc0b597f45e5b14b953325ca0e4c schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 Nd162bf22b5cf4501a41f31d8ecc0f169 rdf:first Ned433aa379314ff6a2c7a7e575548034
104 rdf:rest N4bdb3966649f46868f09ff0b94167ba3
105 Ned433aa379314ff6a2c7a7e575548034 schema:affiliation grid-institutes:grid.5379.8
106 schema:familyName Liang
107 schema:givenName Shao Fen
108 rdf:type schema:Person
109 Nef2f38548ca94b6cb613353061892336 rdf:first N361f99bbce794a42a4344455a4aaff06
110 rdf:rest N4ca55f6589614fab89af3d62ac2ac19b
111 Nf92bb2f028744c1985fb2ffed2d49a3a schema:name Springer Nature
112 rdf:type schema:Organisation
113 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
114 schema:name Information and Computing Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
117 schema:name Artificial Intelligence and Image Processing
118 rdf:type schema:DefinedTerm
119 sg:person.01236476746.78 schema:affiliation grid-institutes:grid.5379.8
120 schema:familyName Rector
121 schema:givenName Alan
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236476746.78
123 rdf:type schema:Person
124 sg:person.014567324417.64 schema:affiliation grid-institutes:grid.12082.39
125 schema:familyName Scott
126 schema:givenName Donia
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014567324417.64
128 rdf:type schema:Person
129 sg:person.0653547307.62 schema:affiliation grid-institutes:grid.5379.8
130 schema:familyName Stevens
131 schema:givenName Robert
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653547307.62
133 rdf:type schema:Person
134 grid-institutes:grid.12082.39 schema:alternateName School of Informatics, University of Sussex, Falmer, BN1 9QH, Brighton, UK
135 schema:name School of Informatics, University of Sussex, Falmer, BN1 9QH, Brighton, UK
136 rdf:type schema:Organization
137 grid-institutes:grid.5379.8 schema:alternateName School of Computer Science, University of Manchester, Oxford Road, M13 9PL, Manchester, UK
138 schema:name School of Computer Science, University of Manchester, Oxford Road, M13 9PL, Manchester, UK
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...