On the Omission Errors Due to Limited Grid Size in Geoid Computations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Yan Ming Wang

ABSTRACT

Based on the assumption that the ultra-high frequencies of thes gravity field are produced by the topography variations, we compute the omission errors by using 3 arc-second elevation data from the Shuttle Radar Topography Mission (SRTM). It is shown that the maximum omission errors to the geoid are in the range of dm, cm and sub-cm level for grid sizes of 5 ′′ , 2 ′′ and 1 ′′ over the contiguous United States (CONUS), respectively. The results suggest that a 1 arc-minute grid size is sufficient for the 1-cm geoid, even for areas with very rough topography. The results also show that the omission errors to gravity are significant even for 1 ′′ grid size, at which the smoothed-out gravity still reaches tens of mGals. The omission errors to gravity at a 5 ′′ grid size peaks above 100 mGals, demonstrating the importance of correction of residual terrain to gravity observations in data gridding or block mean value computations.The results are also compared with those based on Kaula s rule. While the omission errors based on Kaula’s rule are ± 0. 5 and ± 3. 0 cm for 1 ′′ and 5 ′′ grid size, respectively, the RMS values of the omission error in this paper are ± 0. 1 and ± 1. 1 cm. The differences suggest Kaula s rule may overestimate the power of the gravity field at the ultra-high frequency band, which renders the convergence studies of the spherical harmonic series based on Kaula’s rule questionable. More... »

PAGES

221-226

References to SciGraph publications

Book

TITLE

VII Hotine-Marussi Symposium on Mathematical Geodesy

ISBN

978-3-642-22077-7
978-3-642-22078-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-22078-4_33

DOI

http://dx.doi.org/10.1007/978-3-642-22078-4_33

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045420828


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Geodetic Survey", 
          "id": "https://www.grid.ac/institutes/grid.410486.f", 
          "name": [
            "National Geodetic Survey, Silver Spring, MD\u00a020910, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yan Ming", 
        "id": "sg:person.011537241004.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537241004.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00190-003-0318-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016593944", 
          "https://doi.org/10.1007/s00190-003-0318-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001900050222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019018848", 
          "https://doi.org/10.1007/s001900050222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21236/ada150788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091744048"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Based on the assumption that the ultra-high frequencies of thes gravity field are produced by the topography variations, we compute the omission errors by using 3 arc-second elevation data from the Shuttle Radar Topography Mission (SRTM). It is shown that the maximum omission errors to the geoid are in the range of dm, cm and sub-cm level for grid sizes of 5 \u2032\u2032 , 2 \u2032\u2032 and 1 \u2032\u2032 over the contiguous United States (CONUS), respectively. The results suggest that a 1 arc-minute grid size is sufficient for the 1-cm geoid, even for areas with very rough topography. The results also show that the omission errors to gravity are significant even for 1 \u2032\u2032 grid size, at which the smoothed-out gravity still reaches tens of mGals. The omission errors to gravity at a 5 \u2032\u2032 grid size peaks above 100 mGals, demonstrating the importance of correction of residual terrain to gravity observations in data gridding or block mean value computations.The results are also compared with those based on Kaula s rule. While the omission errors based on Kaula\u2019s rule are \u00b1 0. 5 and \u00b1 3. 0 cm for 1 \u2032\u2032 and 5 \u2032\u2032 grid size, respectively, the RMS values of the omission error in this paper are \u00b1 0. 1 and \u00b1 1. 1 cm. The differences suggest Kaula s rule may overestimate the power of the gravity field at the ultra-high frequency band, which renders the convergence studies of the spherical harmonic series based on Kaula\u2019s rule questionable.", 
    "editor": [
      {
        "familyName": "Sneeuw", 
        "givenName": "Nico", 
        "type": "Person"
      }, 
      {
        "familyName": "Nov\u00e1k", 
        "givenName": "Pavel", 
        "type": "Person"
      }, 
      {
        "familyName": "Crespi", 
        "givenName": "Mattia", 
        "type": "Person"
      }, 
      {
        "familyName": "Sans\u00f2", 
        "givenName": "Fernando", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-22078-4_33", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-22077-7", 
        "978-3-642-22078-4"
      ], 
      "name": "VII Hotine-Marussi Symposium on Mathematical Geodesy", 
      "type": "Book"
    }, 
    "name": "On the Omission Errors Due to Limited Grid Size in Geoid Computations", 
    "pagination": "221-226", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-22078-4_33"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d85bff785c6e75f32e5b1310255c866cb72ae2a3f7ade3342a3c60ade50d9c39"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045420828"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-22078-4_33", 
      "https://app.dimensions.ai/details/publication/pub.1045420828"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000271.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-22078-4_33"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22078-4_33'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22078-4_33'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22078-4_33'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-22078-4_33'


 

This table displays all metadata directly associated to this object as RDF triples.

91 TRIPLES      23 PREDICATES      30 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-22078-4_33 schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author N287ea33ddb5d4a598adde7ea49789157
4 schema:citation sg:pub.10.1007/s00190-003-0318-5
5 sg:pub.10.1007/s001900050222
6 https://doi.org/10.21236/ada150788
7 schema:datePublished 2012
8 schema:datePublishedReg 2012-01-01
9 schema:description Based on the assumption that the ultra-high frequencies of thes gravity field are produced by the topography variations, we compute the omission errors by using 3 arc-second elevation data from the Shuttle Radar Topography Mission (SRTM). It is shown that the maximum omission errors to the geoid are in the range of dm, cm and sub-cm level for grid sizes of 5 ′′ , 2 ′′ and 1 ′′ over the contiguous United States (CONUS), respectively. The results suggest that a 1 arc-minute grid size is sufficient for the 1-cm geoid, even for areas with very rough topography. The results also show that the omission errors to gravity are significant even for 1 ′′ grid size, at which the smoothed-out gravity still reaches tens of mGals. The omission errors to gravity at a 5 ′′ grid size peaks above 100 mGals, demonstrating the importance of correction of residual terrain to gravity observations in data gridding or block mean value computations.The results are also compared with those based on Kaula s rule. While the omission errors based on Kaula’s rule are ± 0. 5 and ± 3. 0 cm for 1 ′′ and 5 ′′ grid size, respectively, the RMS values of the omission error in this paper are ± 0. 1 and ± 1. 1 cm. The differences suggest Kaula s rule may overestimate the power of the gravity field at the ultra-high frequency band, which renders the convergence studies of the spherical harmonic series based on Kaula’s rule questionable.
10 schema:editor N9f94b691defd4cb5bedbec89604b7025
11 schema:genre chapter
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N2a98bebe1b3141ddb8c99abe39148a51
15 schema:name On the Omission Errors Due to Limited Grid Size in Geoid Computations
16 schema:pagination 221-226
17 schema:productId N1a61279a9b8a49bdb4c2ea4a7bcb9992
18 N87622494aa174166af95a15cc99d7ae3
19 Ncd99834b5ae14b5e8062e685f8a23552
20 schema:publisher Neb7c336456f74f388dd947eba07c9033
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045420828
22 https://doi.org/10.1007/978-3-642-22078-4_33
23 schema:sdDatePublished 2019-04-15T13:30
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N7bf6dfe9f93548e1acf1d7c6547c4dca
26 schema:url http://link.springer.com/10.1007/978-3-642-22078-4_33
27 sgo:license sg:explorer/license/
28 sgo:sdDataset chapters
29 rdf:type schema:Chapter
30 N0b6e455b3a97415c90481b84547a12cd schema:familyName Sansò
31 schema:givenName Fernando
32 rdf:type schema:Person
33 N1a61279a9b8a49bdb4c2ea4a7bcb9992 schema:name dimensions_id
34 schema:value pub.1045420828
35 rdf:type schema:PropertyValue
36 N287ea33ddb5d4a598adde7ea49789157 rdf:first sg:person.011537241004.41
37 rdf:rest rdf:nil
38 N2a98bebe1b3141ddb8c99abe39148a51 schema:isbn 978-3-642-22077-7
39 978-3-642-22078-4
40 schema:name VII Hotine-Marussi Symposium on Mathematical Geodesy
41 rdf:type schema:Book
42 N525fc7126dc8447c9bfb271a55bf822b schema:familyName Novák
43 schema:givenName Pavel
44 rdf:type schema:Person
45 N6f7055e272a24f088026df0002a91bc0 schema:familyName Sneeuw
46 schema:givenName Nico
47 rdf:type schema:Person
48 N7bf6dfe9f93548e1acf1d7c6547c4dca schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N87622494aa174166af95a15cc99d7ae3 schema:name readcube_id
51 schema:value d85bff785c6e75f32e5b1310255c866cb72ae2a3f7ade3342a3c60ade50d9c39
52 rdf:type schema:PropertyValue
53 N9bbfad7f2a314b2989ec072377824235 schema:familyName Crespi
54 schema:givenName Mattia
55 rdf:type schema:Person
56 N9f94b691defd4cb5bedbec89604b7025 rdf:first N6f7055e272a24f088026df0002a91bc0
57 rdf:rest Nc45b4287177840669ff219255e05ed98
58 Nc45b4287177840669ff219255e05ed98 rdf:first N525fc7126dc8447c9bfb271a55bf822b
59 rdf:rest Ne8da4e5faa214a0eafaafd9dc56e4a8b
60 Ncd99834b5ae14b5e8062e685f8a23552 schema:name doi
61 schema:value 10.1007/978-3-642-22078-4_33
62 rdf:type schema:PropertyValue
63 Ncfae744a0140413f865c75e64a86b92c rdf:first N0b6e455b3a97415c90481b84547a12cd
64 rdf:rest rdf:nil
65 Ne8da4e5faa214a0eafaafd9dc56e4a8b rdf:first N9bbfad7f2a314b2989ec072377824235
66 rdf:rest Ncfae744a0140413f865c75e64a86b92c
67 Neb7c336456f74f388dd947eba07c9033 schema:location Berlin, Heidelberg
68 schema:name Springer Berlin Heidelberg
69 rdf:type schema:Organisation
70 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
71 schema:name Engineering
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
74 schema:name Geomatic Engineering
75 rdf:type schema:DefinedTerm
76 sg:person.011537241004.41 schema:affiliation https://www.grid.ac/institutes/grid.410486.f
77 schema:familyName Wang
78 schema:givenName Yan Ming
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537241004.41
80 rdf:type schema:Person
81 sg:pub.10.1007/s00190-003-0318-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016593944
82 https://doi.org/10.1007/s00190-003-0318-5
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/s001900050222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019018848
85 https://doi.org/10.1007/s001900050222
86 rdf:type schema:CreativeWork
87 https://doi.org/10.21236/ada150788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091744048
88 rdf:type schema:CreativeWork
89 https://www.grid.ac/institutes/grid.410486.f schema:alternateName National Geodetic Survey
90 schema:name National Geodetic Survey, Silver Spring, MD 20910, USA
91 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...