Evidence of Feedforward Postural Adjustments to Reduce Knee Joint Loading in ACL Deficient Patients at Cost of Dynamic Stability Control View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

K. D. Oberländer , K. Karamanidis , J. Höher , G. -P. Brüggemann

ABSTRACT

The aim of this study was to examine the effect of anterior cruciate ligament (ACL) deficiency on joint kinetics and dynamic stability (DS) during landing after a single-leg hop test (SLHT). Twelve unilateral ACL deficient (ACLd) subjects performed a SLHT (both legs). Calculation of landing mechanics was done by means of a soft tissue artifact optimized rigid full body model. Margin of stability (MoS) was defined by the differences between the base of support and extrapolated centre of mass (XCoM). During landing, the ACLd leg showed a lower external knee flexion and adduction moment but generated higher ankle dorsiflexion and hip flexion moments compared to the healthy leg. The kinetic changes at the joints were explained by a increased forward lean of the trunk resulting in a more anterior position of the centre of mass causing an anterior translation of the ground reaction force vector with respect to the joints of the lower extremity in the ACLd leg. The consequence of this ACLdrelated control strategy was a greater XCoM reducing the MoS during landing. Our results give evidence of a feedforward adaptive adjustment in the ACLd leg aimed to reduce mechanical loading at the knee joint at a cost of lesser DS control. More... »

PAGES

264-267

Book

TITLE

15th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics (NBC 2011)

ISBN

978-3-642-21682-4
978-3-642-21683-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-21683-1_67

DOI

http://dx.doi.org/10.1007/978-3-642-21683-1_67

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027264811


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Germany", 
          "id": "http://www.grid.ac/institutes/grid.27593.3a", 
          "name": [
            "Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oberl\u00e4nder", 
        "givenName": "K. D.", 
        "id": "sg:person.0664161767.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664161767.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Germany", 
          "id": "http://www.grid.ac/institutes/grid.27593.3a", 
          "name": [
            "Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karamanidis", 
        "givenName": "K.", 
        "id": "sg:person.0711640665.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711640665.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinic for Sports Traumatology, Merheim Medical Center, Cologne, Germany", 
          "id": "http://www.grid.ac/institutes/grid.14778.3d", 
          "name": [
            "Clinic for Sports Traumatology, Merheim Medical Center, Cologne, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00f6her", 
        "givenName": "J.", 
        "id": "sg:person.01000410367.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000410367.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Germany", 
          "id": "http://www.grid.ac/institutes/grid.27593.3a", 
          "name": [
            "Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Br\u00fcggemann", 
        "givenName": "G. -P.", 
        "id": "sg:person.01301245411.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301245411.57"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "The aim of this study was to examine the effect of anterior cruciate ligament (ACL) deficiency on joint kinetics and dynamic stability (DS) during landing after a single-leg hop test (SLHT). Twelve unilateral ACL deficient (ACLd) subjects performed a SLHT (both legs). Calculation of landing mechanics was done by means of a soft tissue artifact optimized rigid full body model. Margin of stability (MoS) was defined by the differences between the base of support and extrapolated centre of mass (XCoM). During landing, the ACLd leg showed a lower external knee flexion and adduction moment but generated higher ankle dorsiflexion and hip flexion moments compared to the healthy leg. The kinetic changes at the joints were explained by a increased forward lean of the trunk resulting in a more anterior position of the centre of mass causing an anterior translation of the ground reaction force vector with respect to the joints of the lower extremity in the ACLd leg. The consequence of this ACLdrelated control strategy was a greater XCoM reducing the MoS during landing. Our results give evidence of a feedforward adaptive adjustment in the ACLd leg aimed to reduce mechanical loading at the knee joint at a cost of lesser DS control.", 
    "editor": [
      {
        "familyName": "Dremstrup", 
        "givenName": "Kim", 
        "type": "Person"
      }, 
      {
        "familyName": "Rees", 
        "givenName": "Steve", 
        "type": "Person"
      }, 
      {
        "familyName": "Jensen", 
        "givenName": "Morten \u00d8lgaard", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-21683-1_67", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-21682-4", 
        "978-3-642-21683-1"
      ], 
      "name": "15th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics (NBC 2011)", 
      "type": "Book"
    }, 
    "keywords": [
      "single-leg hop tests", 
      "anterior cruciate ligament deficiency", 
      "ACL-deficient subjects", 
      "external knee flexion", 
      "higher ankle dorsiflexion", 
      "feedforward postural adjustments", 
      "ACL-deficient patients", 
      "cruciate ligament deficiency", 
      "hip flexion moment", 
      "knee joint loading", 
      "base of support", 
      "ligament deficiency", 
      "adduction moment", 
      "hop test", 
      "ankle dorsiflexion", 
      "anterior translation", 
      "lower extremities", 
      "landing mechanics", 
      "deficient patients", 
      "knee flexion", 
      "deficient subjects", 
      "postural adjustments", 
      "flexion moment", 
      "knee joint", 
      "healthy leg", 
      "margin of stability", 
      "joint loading", 
      "anterior position", 
      "DS control", 
      "soft tissue artifacts", 
      "joint kinetics", 
      "ground reaction force vector", 
      "leg", 
      "tissue artifacts", 
      "reaction force vector", 
      "kinetic changes", 
      "dynamic stability control", 
      "patients", 
      "dorsiflexion", 
      "joints", 
      "extremities", 
      "flexion", 
      "full-body model", 
      "evidence", 
      "adjustment", 
      "control", 
      "trunk", 
      "center", 
      "deficiency", 
      "subjects", 
      "mechanical loading", 
      "aim", 
      "mass", 
      "differences", 
      "dynamic stability", 
      "study", 
      "test", 
      "effect", 
      "center of mass", 
      "changes", 
      "force vector", 
      "stability control", 
      "control strategy", 
      "support", 
      "margin", 
      "consequences", 
      "strategies", 
      "Mo", 
      "body model", 
      "results", 
      "loading", 
      "translation", 
      "cost", 
      "means", 
      "landing", 
      "stability", 
      "base", 
      "model", 
      "respect", 
      "adaptive adjustment", 
      "vector", 
      "position", 
      "kinetics", 
      "mechanics", 
      "artifacts", 
      "moment", 
      "calculations", 
      "XCOM"
    ], 
    "name": "Evidence of Feedforward Postural Adjustments to Reduce Knee Joint Loading in ACL Deficient Patients at Cost of Dynamic Stability Control", 
    "pagination": "264-267", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027264811"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-21683-1_67"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-21683-1_67", 
      "https://app.dimensions.ai/details/publication/pub.1027264811"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_190.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-21683-1_67"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21683-1_67'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21683-1_67'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21683-1_67'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21683-1_67'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      23 PREDICATES      114 URIs      107 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-21683-1_67 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N37e87e0dfe2345ecbee24be34f284ff4
4 schema:datePublished 2011
5 schema:datePublishedReg 2011-01-01
6 schema:description The aim of this study was to examine the effect of anterior cruciate ligament (ACL) deficiency on joint kinetics and dynamic stability (DS) during landing after a single-leg hop test (SLHT). Twelve unilateral ACL deficient (ACLd) subjects performed a SLHT (both legs). Calculation of landing mechanics was done by means of a soft tissue artifact optimized rigid full body model. Margin of stability (MoS) was defined by the differences between the base of support and extrapolated centre of mass (XCoM). During landing, the ACLd leg showed a lower external knee flexion and adduction moment but generated higher ankle dorsiflexion and hip flexion moments compared to the healthy leg. The kinetic changes at the joints were explained by a increased forward lean of the trunk resulting in a more anterior position of the centre of mass causing an anterior translation of the ground reaction force vector with respect to the joints of the lower extremity in the ACLd leg. The consequence of this ACLdrelated control strategy was a greater XCoM reducing the MoS during landing. Our results give evidence of a feedforward adaptive adjustment in the ACLd leg aimed to reduce mechanical loading at the knee joint at a cost of lesser DS control.
7 schema:editor N7f2e80e1906e4655857212fd3dc7fca9
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N338e670de6964b52b9ec99ccbfd6dc8c
12 schema:keywords ACL-deficient patients
13 ACL-deficient subjects
14 DS control
15 Mo
16 XCOM
17 adaptive adjustment
18 adduction moment
19 adjustment
20 aim
21 ankle dorsiflexion
22 anterior cruciate ligament deficiency
23 anterior position
24 anterior translation
25 artifacts
26 base
27 base of support
28 body model
29 calculations
30 center
31 center of mass
32 changes
33 consequences
34 control
35 control strategy
36 cost
37 cruciate ligament deficiency
38 deficiency
39 deficient patients
40 deficient subjects
41 differences
42 dorsiflexion
43 dynamic stability
44 dynamic stability control
45 effect
46 evidence
47 external knee flexion
48 extremities
49 feedforward postural adjustments
50 flexion
51 flexion moment
52 force vector
53 full-body model
54 ground reaction force vector
55 healthy leg
56 higher ankle dorsiflexion
57 hip flexion moment
58 hop test
59 joint kinetics
60 joint loading
61 joints
62 kinetic changes
63 kinetics
64 knee flexion
65 knee joint
66 knee joint loading
67 landing
68 landing mechanics
69 leg
70 ligament deficiency
71 loading
72 lower extremities
73 margin
74 margin of stability
75 mass
76 means
77 mechanical loading
78 mechanics
79 model
80 moment
81 patients
82 position
83 postural adjustments
84 reaction force vector
85 respect
86 results
87 single-leg hop tests
88 soft tissue artifacts
89 stability
90 stability control
91 strategies
92 study
93 subjects
94 support
95 test
96 tissue artifacts
97 translation
98 trunk
99 vector
100 schema:name Evidence of Feedforward Postural Adjustments to Reduce Knee Joint Loading in ACL Deficient Patients at Cost of Dynamic Stability Control
101 schema:pagination 264-267
102 schema:productId N94b73f1f347b4f4894ed3ca2b5ce44de
103 N965d0b5af5d4441c96ced929b02c36e0
104 schema:publisher N763f9f6653b04d4b890490dec61197be
105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027264811
106 https://doi.org/10.1007/978-3-642-21683-1_67
107 schema:sdDatePublished 2022-06-01T22:29
108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
109 schema:sdPublisher Naae5fe7adb5145b28bd13596eb8bcd19
110 schema:url https://doi.org/10.1007/978-3-642-21683-1_67
111 sgo:license sg:explorer/license/
112 sgo:sdDataset chapters
113 rdf:type schema:Chapter
114 N0a40effcb2fb4245bb9f2094ff9d47d8 rdf:first Nb6184994c9024e6a813d98f44595299a
115 rdf:rest N77c5c0391e3a494faf5688583119b4cc
116 N338e670de6964b52b9ec99ccbfd6dc8c schema:isbn 978-3-642-21682-4
117 978-3-642-21683-1
118 schema:name 15th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics (NBC 2011)
119 rdf:type schema:Book
120 N37e87e0dfe2345ecbee24be34f284ff4 rdf:first sg:person.0664161767.02
121 rdf:rest Nd4fac0ddf523445586d6db8397a14f5e
122 N65464de39f4b44c8b9e972215ae38455 rdf:first sg:person.01000410367.69
123 rdf:rest Nf3c6fe4141dd478aa10a8f32eba853ad
124 N763f9f6653b04d4b890490dec61197be schema:name Springer Nature
125 rdf:type schema:Organisation
126 N77c5c0391e3a494faf5688583119b4cc rdf:first Nb4bdd2afe6cb4d32b479d855991583b1
127 rdf:rest rdf:nil
128 N7f2e80e1906e4655857212fd3dc7fca9 rdf:first Nb07f472dd5644f6c9fe5adabcbbcb930
129 rdf:rest N0a40effcb2fb4245bb9f2094ff9d47d8
130 N94b73f1f347b4f4894ed3ca2b5ce44de schema:name doi
131 schema:value 10.1007/978-3-642-21683-1_67
132 rdf:type schema:PropertyValue
133 N965d0b5af5d4441c96ced929b02c36e0 schema:name dimensions_id
134 schema:value pub.1027264811
135 rdf:type schema:PropertyValue
136 Naae5fe7adb5145b28bd13596eb8bcd19 schema:name Springer Nature - SN SciGraph project
137 rdf:type schema:Organization
138 Nb07f472dd5644f6c9fe5adabcbbcb930 schema:familyName Dremstrup
139 schema:givenName Kim
140 rdf:type schema:Person
141 Nb4bdd2afe6cb4d32b479d855991583b1 schema:familyName Jensen
142 schema:givenName Morten Ølgaard
143 rdf:type schema:Person
144 Nb6184994c9024e6a813d98f44595299a schema:familyName Rees
145 schema:givenName Steve
146 rdf:type schema:Person
147 Nd4fac0ddf523445586d6db8397a14f5e rdf:first sg:person.0711640665.48
148 rdf:rest N65464de39f4b44c8b9e972215ae38455
149 Nf3c6fe4141dd478aa10a8f32eba853ad rdf:first sg:person.01301245411.57
150 rdf:rest rdf:nil
151 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
152 schema:name Medical and Health Sciences
153 rdf:type schema:DefinedTerm
154 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
155 schema:name Clinical Sciences
156 rdf:type schema:DefinedTerm
157 sg:person.01000410367.69 schema:affiliation grid-institutes:grid.14778.3d
158 schema:familyName Höher
159 schema:givenName J.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000410367.69
161 rdf:type schema:Person
162 sg:person.01301245411.57 schema:affiliation grid-institutes:grid.27593.3a
163 schema:familyName Brüggemann
164 schema:givenName G. -P.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301245411.57
166 rdf:type schema:Person
167 sg:person.0664161767.02 schema:affiliation grid-institutes:grid.27593.3a
168 schema:familyName Oberländer
169 schema:givenName K. D.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664161767.02
171 rdf:type schema:Person
172 sg:person.0711640665.48 schema:affiliation grid-institutes:grid.27593.3a
173 schema:familyName Karamanidis
174 schema:givenName K.
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711640665.48
176 rdf:type schema:Person
177 grid-institutes:grid.14778.3d schema:alternateName Clinic for Sports Traumatology, Merheim Medical Center, Cologne, Germany
178 schema:name Clinic for Sports Traumatology, Merheim Medical Center, Cologne, Germany
179 rdf:type schema:Organization
180 grid-institutes:grid.27593.3a schema:alternateName Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Germany
181 schema:name Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Germany
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...