Interactive Visualization–A Key Prerequisite for Reconstruction and Analysis of Anatomically Realistic Neural Networks View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2012

AUTHORS

Vincent J. Dercksen , Marcel Oberlaender , Bert Sakmann , Hans-Christian Hege

ABSTRACT

Recent progress in large-volume microscopy, tissue-staining, as well as in image processing methods and 3D anatomy reconstruction allow neuroscientists to extract previously inaccessible anatomical data with high precision. For instance, determination of neuron numbers, 3D distributions and 3D axonal and dendritic branching patterns support recently started efforts to reconstruct anatomically realistic network models of many thousand neurons. Such models aid in understanding neural network structure, and, by numerically simulating electro-physiological signaling, also to reveal their function. We illustrate the impact of visual computing on neurobiology at the example of important steps that are required for the reconstruction of large neural networks. In our case, the network to be reconstructed represents a single cortical column in the rat brain, which processes sensory information from its associated facial whisker hair. We demonstrate how analysis and reconstruction tasks, such as neuron somata counting and tracing of neuronal branches, have been incrementally accelerated – finally leading to efficiency gains of orders of magnitude. We also show how steps that are difficult to automatize can now be solved interactively with visual support. Additionally, we illustrate how visualization techniques have aided computer scientists during algorithm development. Finally, we present visual analysis techniques allowing neuroscientists to explore morphology and function of 3D neural networks. Altogether, we demonstrate that visual computing techniques make an essential difference in terms of scientific output, both qualitatively, i.e., whether particular More... »

PAGES

27-44

References to SciGraph publications

Book

TITLE

Visualization in Medicine and Life Sciences II

ISBN

978-3-642-21607-7
978-3-642-21608-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-21608-4_2

DOI

http://dx.doi.org/10.1007/978-3-642-21608-4_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006775853


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Zuse Institute Berlin", 
          "id": "https://www.grid.ac/institutes/grid.425649.8", 
          "name": [
            "Zuse Institute Berlin, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dercksen", 
        "givenName": "Vincent J.", 
        "id": "sg:person.01035125547.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035125547.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Florida Institute for Neuroscience", 
          "id": "https://www.grid.ac/institutes/grid.421185.b", 
          "name": [
            "Max Planck Florida Institute, Digital Neuroanatomy, Jupiter, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oberlaender", 
        "givenName": "Marcel", 
        "id": "sg:person.01330054647.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330054647.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Florida Institute for Neuroscience", 
          "id": "https://www.grid.ac/institutes/grid.421185.b", 
          "name": [
            "Max Planck Florida Institute, Digital Neuroanatomy, Jupiter, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakmann", 
        "givenName": "Bert", 
        "id": "sg:person.01151354147.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151354147.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zuse Institute Berlin", 
          "id": "https://www.grid.ac/institutes/grid.425649.8", 
          "name": [
            "Zuse Institute Berlin, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hege", 
        "givenName": "Hans-Christian", 
        "id": "sg:person.0736670312.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736670312.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2009.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003211280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2818.1984.tb02501.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003830806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhq067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005884647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009489486", 
          "https://doi.org/10.1038/nbt.1612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012002824", 
          "https://doi.org/10.1038/nrn1848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012002824", 
          "https://doi.org/10.1038/nrn1848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-012387582-2/50040-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021265618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cyto.a.20895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024364236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cyto.a.20895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024364236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030806574", 
          "https://doi.org/10.1038/nmeth989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030806574", 
          "https://doi.org/10.1038/nmeth989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2007.09.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037991710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brainresrev.2007.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039474537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2818.2009.03118.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044171909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.2815693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052382172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhq068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052597462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511815706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098668653"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Recent progress in large-volume microscopy, tissue-staining, as well as in image processing methods and 3D anatomy reconstruction allow neuroscientists to extract previously inaccessible anatomical data with high precision. For instance, determination of neuron numbers, 3D distributions and 3D axonal and dendritic branching patterns support recently started efforts to reconstruct anatomically realistic network models of many thousand neurons. Such models aid in understanding neural network structure, and, by numerically simulating electro-physiological signaling, also to reveal their function. We illustrate the impact of visual computing on neurobiology at the example of important steps that are required for the reconstruction of large neural networks. In our case, the network to be reconstructed represents a single cortical column in the rat brain, which processes sensory information from its associated facial whisker hair. We demonstrate how analysis and reconstruction tasks, such as neuron somata counting and tracing of neuronal branches, have been incrementally accelerated \u2013 finally leading to efficiency gains of orders of magnitude. We also show how steps that are difficult to automatize can now be solved interactively with visual support. Additionally, we illustrate how visualization techniques have aided computer scientists during algorithm development. Finally, we present visual analysis techniques allowing neuroscientists to explore morphology and function of 3D neural networks. Altogether, we demonstrate that visual computing techniques make an essential difference in terms of scientific output, both qualitatively, i.e., whether particular", 
    "editor": [
      {
        "familyName": "Linsen", 
        "givenName": "Lars", 
        "type": "Person"
      }, 
      {
        "familyName": "Hagen", 
        "givenName": "Hans", 
        "type": "Person"
      }, 
      {
        "familyName": "Hamann", 
        "givenName": "Bernd", 
        "type": "Person"
      }, 
      {
        "familyName": "Hege", 
        "givenName": "Hans-Christian", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-21608-4_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-21607-7", 
        "978-3-642-21608-4"
      ], 
      "name": "Visualization in Medicine and Life Sciences II", 
      "type": "Book"
    }, 
    "name": "Interactive Visualization\u2013A Key Prerequisite for Reconstruction and Analysis of Anatomically Realistic Neural Networks", 
    "pagination": "27-44", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-21608-4_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "204679b170e050c59098634d39281a5082984163e8e19a52d8f420f2aebb5cd5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006775853"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-21608-4_2", 
      "https://app.dimensions.ai/details/publication/pub.1006775853"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000247.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-21608-4_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21608-4_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21608-4_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21608-4_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21608-4_2'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-21608-4_2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N7611892162f147a89382342d80b56d31
4 schema:citation sg:pub.10.1038/nbt.1612
5 sg:pub.10.1038/nmeth989
6 sg:pub.10.1038/nrn1848
7 https://doi.org/10.1002/cyto.a.20895
8 https://doi.org/10.1016/b978-012387582-2/50040-x
9 https://doi.org/10.1016/j.brainresrev.2007.07.011
10 https://doi.org/10.1016/j.jneumeth.2009.03.008
11 https://doi.org/10.1016/j.neuron.2007.09.017
12 https://doi.org/10.1017/cbo9780511815706
13 https://doi.org/10.1093/cercor/bhq067
14 https://doi.org/10.1093/cercor/bhq068
15 https://doi.org/10.1111/j.1365-2818.1984.tb02501.x
16 https://doi.org/10.1111/j.1365-2818.2009.03118.x
17 https://doi.org/10.1117/1.2815693
18 schema:datePublished 2012
19 schema:datePublishedReg 2012-01-01
20 schema:description Recent progress in large-volume microscopy, tissue-staining, as well as in image processing methods and 3D anatomy reconstruction allow neuroscientists to extract previously inaccessible anatomical data with high precision. For instance, determination of neuron numbers, 3D distributions and 3D axonal and dendritic branching patterns support recently started efforts to reconstruct anatomically realistic network models of many thousand neurons. Such models aid in understanding neural network structure, and, by numerically simulating electro-physiological signaling, also to reveal their function. We illustrate the impact of visual computing on neurobiology at the example of important steps that are required for the reconstruction of large neural networks. In our case, the network to be reconstructed represents a single cortical column in the rat brain, which processes sensory information from its associated facial whisker hair. We demonstrate how analysis and reconstruction tasks, such as neuron somata counting and tracing of neuronal branches, have been incrementally accelerated – finally leading to efficiency gains of orders of magnitude. We also show how steps that are difficult to automatize can now be solved interactively with visual support. Additionally, we illustrate how visualization techniques have aided computer scientists during algorithm development. Finally, we present visual analysis techniques allowing neuroscientists to explore morphology and function of 3D neural networks. Altogether, we demonstrate that visual computing techniques make an essential difference in terms of scientific output, both qualitatively, i.e., whether particular
21 schema:editor N2fce7fd255df4dfd8b22d271eb2f492a
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N41b511a7d40047b5893e61bb9a98bdd9
26 schema:name Interactive Visualization–A Key Prerequisite for Reconstruction and Analysis of Anatomically Realistic Neural Networks
27 schema:pagination 27-44
28 schema:productId N055c743af0b54532ac279faea404b8a2
29 Na2e7d99a801645edbd033182b2a2bd62
30 Ncc6c53ddd24643539dad45991ff887e6
31 schema:publisher N19c6d099db754101b0504841a2f51bc4
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006775853
33 https://doi.org/10.1007/978-3-642-21608-4_2
34 schema:sdDatePublished 2019-04-15T18:08
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N690cb4108300488ea2f47d3d97578418
37 schema:url http://link.springer.com/10.1007/978-3-642-21608-4_2
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N055c743af0b54532ac279faea404b8a2 schema:name doi
42 schema:value 10.1007/978-3-642-21608-4_2
43 rdf:type schema:PropertyValue
44 N085cd2e1cbeb44be99aa7ca35cd82fcb rdf:first N1c1e6e6987934611955dc2511c538d68
45 rdf:rest Ncf26ee889e7949e394f543fc528e8d33
46 N0992bad0083a48359ef8bb42f9f70ff8 rdf:first sg:person.01330054647.09
47 rdf:rest N8940d92e72e6409f9c542fc32d7795bf
48 N0ced41fd67634cd3919264d91839e7e6 schema:familyName Linsen
49 schema:givenName Lars
50 rdf:type schema:Person
51 N19c6d099db754101b0504841a2f51bc4 schema:location Berlin, Heidelberg
52 schema:name Springer Berlin Heidelberg
53 rdf:type schema:Organisation
54 N1c1e6e6987934611955dc2511c538d68 schema:familyName Hamann
55 schema:givenName Bernd
56 rdf:type schema:Person
57 N23842c14f58e4d9d93051effc9f69e7e schema:familyName Hege
58 schema:givenName Hans-Christian
59 rdf:type schema:Person
60 N2fce7fd255df4dfd8b22d271eb2f492a rdf:first N0ced41fd67634cd3919264d91839e7e6
61 rdf:rest Nfedd69041d904928b011c89b4dc49aa4
62 N41b511a7d40047b5893e61bb9a98bdd9 schema:isbn 978-3-642-21607-7
63 978-3-642-21608-4
64 schema:name Visualization in Medicine and Life Sciences II
65 rdf:type schema:Book
66 N45de4105836c47809fa1cd8d23aa4d3c schema:familyName Hagen
67 schema:givenName Hans
68 rdf:type schema:Person
69 N690cb4108300488ea2f47d3d97578418 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N7611892162f147a89382342d80b56d31 rdf:first sg:person.01035125547.13
72 rdf:rest N0992bad0083a48359ef8bb42f9f70ff8
73 N8940d92e72e6409f9c542fc32d7795bf rdf:first sg:person.01151354147.07
74 rdf:rest N89d25bbd235f46cbb78032d33c4c48af
75 N89d25bbd235f46cbb78032d33c4c48af rdf:first sg:person.0736670312.87
76 rdf:rest rdf:nil
77 Na2e7d99a801645edbd033182b2a2bd62 schema:name dimensions_id
78 schema:value pub.1006775853
79 rdf:type schema:PropertyValue
80 Ncc6c53ddd24643539dad45991ff887e6 schema:name readcube_id
81 schema:value 204679b170e050c59098634d39281a5082984163e8e19a52d8f420f2aebb5cd5
82 rdf:type schema:PropertyValue
83 Ncf26ee889e7949e394f543fc528e8d33 rdf:first N23842c14f58e4d9d93051effc9f69e7e
84 rdf:rest rdf:nil
85 Nfedd69041d904928b011c89b4dc49aa4 rdf:first N45de4105836c47809fa1cd8d23aa4d3c
86 rdf:rest N085cd2e1cbeb44be99aa7ca35cd82fcb
87 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
88 schema:name Information and Computing Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
91 schema:name Artificial Intelligence and Image Processing
92 rdf:type schema:DefinedTerm
93 sg:person.01035125547.13 schema:affiliation https://www.grid.ac/institutes/grid.425649.8
94 schema:familyName Dercksen
95 schema:givenName Vincent J.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035125547.13
97 rdf:type schema:Person
98 sg:person.01151354147.07 schema:affiliation https://www.grid.ac/institutes/grid.421185.b
99 schema:familyName Sakmann
100 schema:givenName Bert
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151354147.07
102 rdf:type schema:Person
103 sg:person.01330054647.09 schema:affiliation https://www.grid.ac/institutes/grid.421185.b
104 schema:familyName Oberlaender
105 schema:givenName Marcel
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330054647.09
107 rdf:type schema:Person
108 sg:person.0736670312.87 schema:affiliation https://www.grid.ac/institutes/grid.425649.8
109 schema:familyName Hege
110 schema:givenName Hans-Christian
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736670312.87
112 rdf:type schema:Person
113 sg:pub.10.1038/nbt.1612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009489486
114 https://doi.org/10.1038/nbt.1612
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/nmeth989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030806574
117 https://doi.org/10.1038/nmeth989
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/nrn1848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012002824
120 https://doi.org/10.1038/nrn1848
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/cyto.a.20895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024364236
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/b978-012387582-2/50040-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021265618
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.brainresrev.2007.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039474537
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.jneumeth.2009.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003211280
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.neuron.2007.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037991710
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1017/cbo9780511815706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098668653
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1093/cercor/bhq067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005884647
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1093/cercor/bhq068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052597462
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1111/j.1365-2818.1984.tb02501.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003830806
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1111/j.1365-2818.2009.03118.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044171909
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1117/1.2815693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052382172
143 rdf:type schema:CreativeWork
144 https://www.grid.ac/institutes/grid.421185.b schema:alternateName Max Planck Florida Institute for Neuroscience
145 schema:name Max Planck Florida Institute, Digital Neuroanatomy, Jupiter, USA
146 rdf:type schema:Organization
147 https://www.grid.ac/institutes/grid.425649.8 schema:alternateName Zuse Institute Berlin
148 schema:name Zuse Institute Berlin, Berlin, Germany
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...