Multiple Classifier System for Urban Area’s Extraction from High Resolution Remote Sensing Imagery View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Safaa M. Bedawi , Mohamed S. Kamel

ABSTRACT

In this paper, a land-cover extraction thematic mapping approach for urban areas from very high resolution aerial images is presented. Recent developments in the field of sensor technology have increased the challenges of interpreting images contents particularly in the case of complex scenes of dense urban areas. The major objective of this study is to improve the quality of land-cover classification. We investigated the use of multiple classifier systems (MCS) based on dynamic classifier selection. The selection scheme consists of an ensemble of weak classifiers, a trainable selector, and a combiner. We also investigated the effect of using Particle Swarm Optimization (PSO) based classifier as the base classifier in the ensemble module, for the classification of such complex problems. A PSO-based classifier discovers the classification rules by simulating the social behaviour of animals. We experimented with the parallel ensemble architecture wherein the feature space is divided randomly among the ensemble and the selector. We report the results of using separate/similar training sets for the ensemble and the selector, and how each case affects the global classification error. The results show that selection improves the combination performance compared to the combination of all classifiers with a higher improvement when using different training set scenarios and also shows the potential of the PSO-based approach for classifying such images. More... »

PAGES

307-316

References to SciGraph publications

  • 2003. A Particle Swarm Data Miner in PROGRESS IN ARTIFICIAL INTELLIGENCE
  • 2007. Multiple Classifier Systems in Remote Sensing: From Basics to Recent Developments in MULTIPLE CLASSIFIER SYSTEMS
  • 2008-01. Swarm intelligence for classification of remote sensing data in SCIENCE IN CHINA SERIES D EARTH SCIENCES
  • 2000-12-01. Dynamic Classifier Selection in MULTIPLE CLASSIFIER SYSTEMS
  • Book

    TITLE

    Image Analysis and Recognition

    ISBN

    978-3-642-21595-7
    978-3-642-21596-4

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-21596-4_31

    DOI

    http://dx.doi.org/10.1007/978-3-642-21596-4_31

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041575755


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Pattern Analysis and Machine Intelligence Lab, Department of Electrical and Computer Engineering, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bedawi", 
            "givenName": "Safaa M.", 
            "id": "sg:person.014172237775.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014172237775.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Pattern Analysis and Machine Intelligence Lab, Department of Electrical and Computer Engineering, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kamel", 
            "givenName": "Mohamed S.", 
            "id": "sg:person.01133760566.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-45014-9_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019861761", 
              "https://doi.org/10.1007/3-540-45014-9_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45014-9_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019861761", 
              "https://doi.org/10.1007/3-540-45014-9_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2006.02.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026477952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14358/pers.75.6.679", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028944045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-72523-7_50", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039128549", 
              "https://doi.org/10.1007/978-3-540-72523-7_50"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11430-007-0133-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040811303", 
              "https://doi.org/10.1007/s11430-007-0133-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01431160600746456", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041894571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24580-3_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048159477", 
              "https://doi.org/10.1007/978-3-540-24580-3_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24580-3_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048159477", 
              "https://doi.org/10.1007/978-3-540-24580-3_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tgrs.2006.872903", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061609803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0218001405004083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062949506"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icnn.1995.488968", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093669333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471660264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471660264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661458"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011", 
        "datePublishedReg": "2011-01-01", 
        "description": "In this paper, a land-cover extraction thematic mapping approach for urban areas from very high resolution aerial images is presented. Recent developments in the field of sensor technology have increased the challenges of interpreting images contents particularly in the case of complex scenes of dense urban areas. The major objective of this study is to improve the quality of land-cover classification. We investigated the use of multiple classifier systems (MCS) based on dynamic classifier selection. The selection scheme consists of an ensemble of weak classifiers, a trainable selector, and a combiner. We also investigated the effect of using Particle Swarm Optimization (PSO) based classifier as the base classifier in the ensemble module, for the classification of such complex problems. A PSO-based classifier discovers the classification rules by simulating the social behaviour of animals. We experimented with the parallel ensemble architecture wherein the feature space is divided randomly among the ensemble and the selector. We report the results of using separate/similar training sets for the ensemble and the selector, and how each case affects the global classification error. The results show that selection improves the combination performance compared to the combination of all classifiers with a higher improvement when using different training set scenarios and also shows the potential of the PSO-based approach for classifying such images.", 
        "editor": [
          {
            "familyName": "Kamel", 
            "givenName": "Mohamed", 
            "type": "Person"
          }, 
          {
            "familyName": "Campilho", 
            "givenName": "Aur\u00e9lio", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-21596-4_31", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-21595-7", 
            "978-3-642-21596-4"
          ], 
          "name": "Image Analysis and Recognition", 
          "type": "Book"
        }, 
        "name": "Multiple Classifier System for Urban Area\u2019s Extraction from High Resolution Remote Sensing Imagery", 
        "pagination": "307-316", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041575755"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-21596-4_31"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c60da7ea6927c334840f4a0fe580cf79a53b83f4ad989a989ca3f85d4338831b"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-21596-4_31", 
          "https://app.dimensions.ai/details/publication/pub.1041575755"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T08:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68980_00000001.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-642-21596-4_31"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21596-4_31'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21596-4_31'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21596-4_31'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21596-4_31'


     

    This table displays all metadata directly associated to this object as RDF triples.

    114 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-21596-4_31 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N2b86a4ad9b2e452894ff92c0db177a87
    4 schema:citation sg:pub.10.1007/3-540-45014-9_17
    5 sg:pub.10.1007/978-3-540-24580-3_12
    6 sg:pub.10.1007/978-3-540-72523-7_50
    7 sg:pub.10.1007/s11430-007-0133-6
    8 https://doi.org/10.1002/0471660264
    9 https://doi.org/10.1016/j.patcog.2006.02.003
    10 https://doi.org/10.1080/01431160600746456
    11 https://doi.org/10.1109/icnn.1995.488968
    12 https://doi.org/10.1109/tgrs.2006.872903
    13 https://doi.org/10.1142/s0218001405004083
    14 https://doi.org/10.14358/pers.75.6.679
    15 schema:datePublished 2011
    16 schema:datePublishedReg 2011-01-01
    17 schema:description In this paper, a land-cover extraction thematic mapping approach for urban areas from very high resolution aerial images is presented. Recent developments in the field of sensor technology have increased the challenges of interpreting images contents particularly in the case of complex scenes of dense urban areas. The major objective of this study is to improve the quality of land-cover classification. We investigated the use of multiple classifier systems (MCS) based on dynamic classifier selection. The selection scheme consists of an ensemble of weak classifiers, a trainable selector, and a combiner. We also investigated the effect of using Particle Swarm Optimization (PSO) based classifier as the base classifier in the ensemble module, for the classification of such complex problems. A PSO-based classifier discovers the classification rules by simulating the social behaviour of animals. We experimented with the parallel ensemble architecture wherein the feature space is divided randomly among the ensemble and the selector. We report the results of using separate/similar training sets for the ensemble and the selector, and how each case affects the global classification error. The results show that selection improves the combination performance compared to the combination of all classifiers with a higher improvement when using different training set scenarios and also shows the potential of the PSO-based approach for classifying such images.
    18 schema:editor N94b63188caf1428c9b054218f138c388
    19 schema:genre chapter
    20 schema:inLanguage en
    21 schema:isAccessibleForFree false
    22 schema:isPartOf Nad19c21396da4b65a896313172dd624f
    23 schema:name Multiple Classifier System for Urban Area’s Extraction from High Resolution Remote Sensing Imagery
    24 schema:pagination 307-316
    25 schema:productId N718831dd87c7410ea4071e25441c9298
    26 N8c5f40644a444477b80c1fa23aa8f3d8
    27 Ne6bcdabbd0d0483d8d1a17af1545b7b7
    28 schema:publisher N5cc3d9d39b2c4bb193d34c3bf701ecd1
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041575755
    30 https://doi.org/10.1007/978-3-642-21596-4_31
    31 schema:sdDatePublished 2019-04-16T08:59
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher Na3472d99ff484b3a98f8a97e7cf76ecf
    34 schema:url https://link.springer.com/10.1007%2F978-3-642-21596-4_31
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset chapters
    37 rdf:type schema:Chapter
    38 N2b86a4ad9b2e452894ff92c0db177a87 rdf:first sg:person.014172237775.62
    39 rdf:rest N8818ab30f9a64652b412d7970c442e2c
    40 N5cc3d9d39b2c4bb193d34c3bf701ecd1 schema:location Berlin, Heidelberg
    41 schema:name Springer Berlin Heidelberg
    42 rdf:type schema:Organisation
    43 N718831dd87c7410ea4071e25441c9298 schema:name dimensions_id
    44 schema:value pub.1041575755
    45 rdf:type schema:PropertyValue
    46 N7c48a7f6460947ddad15f647a2ef044a schema:familyName Campilho
    47 schema:givenName Aurélio
    48 rdf:type schema:Person
    49 N8818ab30f9a64652b412d7970c442e2c rdf:first sg:person.01133760566.26
    50 rdf:rest rdf:nil
    51 N8c5f40644a444477b80c1fa23aa8f3d8 schema:name doi
    52 schema:value 10.1007/978-3-642-21596-4_31
    53 rdf:type schema:PropertyValue
    54 N94b63188caf1428c9b054218f138c388 rdf:first Ne116c4abfc6c484ca8bfb16150ece8b0
    55 rdf:rest Ncaef41c4bb664548ba5bf12d5b3aab0d
    56 Na3472d99ff484b3a98f8a97e7cf76ecf schema:name Springer Nature - SN SciGraph project
    57 rdf:type schema:Organization
    58 Nad19c21396da4b65a896313172dd624f schema:isbn 978-3-642-21595-7
    59 978-3-642-21596-4
    60 schema:name Image Analysis and Recognition
    61 rdf:type schema:Book
    62 Ncaef41c4bb664548ba5bf12d5b3aab0d rdf:first N7c48a7f6460947ddad15f647a2ef044a
    63 rdf:rest rdf:nil
    64 Ne116c4abfc6c484ca8bfb16150ece8b0 schema:familyName Kamel
    65 schema:givenName Mohamed
    66 rdf:type schema:Person
    67 Ne6bcdabbd0d0483d8d1a17af1545b7b7 schema:name readcube_id
    68 schema:value c60da7ea6927c334840f4a0fe580cf79a53b83f4ad989a989ca3f85d4338831b
    69 rdf:type schema:PropertyValue
    70 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Information and Computing Sciences
    72 rdf:type schema:DefinedTerm
    73 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Artificial Intelligence and Image Processing
    75 rdf:type schema:DefinedTerm
    76 sg:person.01133760566.26 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    77 schema:familyName Kamel
    78 schema:givenName Mohamed S.
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26
    80 rdf:type schema:Person
    81 sg:person.014172237775.62 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    82 schema:familyName Bedawi
    83 schema:givenName Safaa M.
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014172237775.62
    85 rdf:type schema:Person
    86 sg:pub.10.1007/3-540-45014-9_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019861761
    87 https://doi.org/10.1007/3-540-45014-9_17
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/978-3-540-24580-3_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048159477
    90 https://doi.org/10.1007/978-3-540-24580-3_12
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/978-3-540-72523-7_50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039128549
    93 https://doi.org/10.1007/978-3-540-72523-7_50
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/s11430-007-0133-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040811303
    96 https://doi.org/10.1007/s11430-007-0133-6
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1002/0471660264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661458
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1016/j.patcog.2006.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026477952
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1080/01431160600746456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041894571
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1109/icnn.1995.488968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093669333
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1109/tgrs.2006.872903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609803
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1142/s0218001405004083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062949506
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.14358/pers.75.6.679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028944045
    111 rdf:type schema:CreativeWork
    112 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
    113 schema:name Pattern Analysis and Machine Intelligence Lab, Department of Electrical and Computer Engineering, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
    114 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...