Maneuvering Head Motion Tracking by Coarse-to-Fine Particle Filter View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Yun-Qian Miao , Paul Fieguth , Mohamed S. Kamel

ABSTRACT

Tracking a very actively maneuvering object is challenging due to the lack of state transition dynamics to describe the system’s evolution. In this paper, a coarse-to-fine particle filter algorithm is proposed for such tracking, whereby one loop of the traditional particle filtering approach is divided into two stages. In the coarse stage, the particles adopt a uniform distribution which is parameterized by the limited motion range within each time step. In the following fine stage, the particles are resampled using the results of the coarse stage as the proposal distribution, which incorporates the most present observation. The weighting scheme is implemented using a partitioned color cue that implicitly embeds geometric information to enhance robustness. The system is tested by a publicly available dataset for tracking an intentionally erratic moving human head. The results demonstrate that the proposed system is capable of handling random motion dynamics with a relatively small number of particles. More... »

PAGES

385-394

References to SciGraph publications

  • 2002. Color-Based Probabilistic Tracking in COMPUTER VISION — ECCV 2002
  • Book

    TITLE

    Image Analysis and Recognition

    ISBN

    978-3-642-21592-6
    978-3-642-21593-3

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-21593-3_39

    DOI

    http://dx.doi.org/10.1007/978-3-642-21593-3_39

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038946535


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Resources Engineering and Extractive Metallurgy", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Department of Electrical and Computer Engineering, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miao", 
            "givenName": "Yun-Qian", 
            "id": "sg:person.014647312360.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014647312360.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Department of System Design Engineering, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fieguth", 
            "givenName": "Paul", 
            "id": "sg:person.0635130640.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635130640.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Department of Electrical and Computer Engineering, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kamel", 
            "givenName": "Mohamed S.", 
            "id": "sg:person.01133760566.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/1177352.1177355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003634065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0493(1998)126<0796:dauaek>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013190770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-47969-4_44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013439571", 
              "https://doi.org/10.1007/3-540-47969-4_44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0262-8856(02)00129-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022579526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0262-8856(02)00129-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022579526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0262-8856(02)00129-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022579526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.899946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061157204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/78.978374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061231793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jproc.2003.823141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061296223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2008.57", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/nsspw.2006.4378824", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093813026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/nsspw.2006.4378824", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093813026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2003.1238321", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094541097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icarcv.2010.5707796", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094616701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icpr.2010.882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094879985"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011", 
        "datePublishedReg": "2011-01-01", 
        "description": "Tracking a very actively maneuvering object is challenging due to the lack of state transition dynamics to describe the system\u2019s evolution. In this paper, a coarse-to-fine particle filter algorithm is proposed for such tracking, whereby one loop of the traditional particle filtering approach is divided into two stages. In the coarse stage, the particles adopt a uniform distribution which is parameterized by the limited motion range within each time step. In the following fine stage, the particles are resampled using the results of the coarse stage as the proposal distribution, which incorporates the most present observation. The weighting scheme is implemented using a partitioned color cue that implicitly embeds geometric information to enhance robustness. The system is tested by a publicly available dataset for tracking an intentionally erratic moving human head. The results demonstrate that the proposed system is capable of handling random motion dynamics with a relatively small number of particles.", 
        "editor": [
          {
            "familyName": "Kamel", 
            "givenName": "Mohamed", 
            "type": "Person"
          }, 
          {
            "familyName": "Campilho", 
            "givenName": "Aur\u00e9lio", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-21593-3_39", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-21592-6", 
            "978-3-642-21593-3"
          ], 
          "name": "Image Analysis and Recognition", 
          "type": "Book"
        }, 
        "name": "Maneuvering Head Motion Tracking by Coarse-to-Fine Particle Filter", 
        "pagination": "385-394", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038946535"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-21593-3_39"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b98566e6a48f254c4cd2010c272f7f98773f35b6b36a0ab28535f09cc013807d"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-21593-3_39", 
          "https://app.dimensions.ai/details/publication/pub.1038946535"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T08:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68956_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-642-21593-3_39"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21593-3_39'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21593-3_39'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21593-3_39'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21593-3_39'


     

    This table displays all metadata directly associated to this object as RDF triples.

    122 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-21593-3_39 schema:about anzsrc-for:09
    2 anzsrc-for:0914
    3 schema:author Ne9df279b3cc5475a9a9d17632d99f534
    4 schema:citation sg:pub.10.1007/3-540-47969-4_44
    5 https://doi.org/10.1016/s0262-8856(02)00129-4
    6 https://doi.org/10.1109/34.899946
    7 https://doi.org/10.1109/78.978374
    8 https://doi.org/10.1109/icarcv.2010.5707796
    9 https://doi.org/10.1109/iccv.2003.1238321
    10 https://doi.org/10.1109/icpr.2010.882
    11 https://doi.org/10.1109/jproc.2003.823141
    12 https://doi.org/10.1109/nsspw.2006.4378824
    13 https://doi.org/10.1109/tpami.2008.57
    14 https://doi.org/10.1145/1177352.1177355
    15 https://doi.org/10.1175/1520-0493(1998)126<0796:dauaek>2.0.co;2
    16 schema:datePublished 2011
    17 schema:datePublishedReg 2011-01-01
    18 schema:description Tracking a very actively maneuvering object is challenging due to the lack of state transition dynamics to describe the system’s evolution. In this paper, a coarse-to-fine particle filter algorithm is proposed for such tracking, whereby one loop of the traditional particle filtering approach is divided into two stages. In the coarse stage, the particles adopt a uniform distribution which is parameterized by the limited motion range within each time step. In the following fine stage, the particles are resampled using the results of the coarse stage as the proposal distribution, which incorporates the most present observation. The weighting scheme is implemented using a partitioned color cue that implicitly embeds geometric information to enhance robustness. The system is tested by a publicly available dataset for tracking an intentionally erratic moving human head. The results demonstrate that the proposed system is capable of handling random motion dynamics with a relatively small number of particles.
    19 schema:editor N7f357be0da43410687a9e25ee7e0ca50
    20 schema:genre chapter
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N77bffa1b45cc4f01b4e38d2a1905ac66
    24 schema:name Maneuvering Head Motion Tracking by Coarse-to-Fine Particle Filter
    25 schema:pagination 385-394
    26 schema:productId Nb0155fb7a1124974a39a8d557a57264f
    27 Nc373cf3dd62043119cef4e3cb5ec2871
    28 Nfa8adbf1b4ba48cc9188f6619f453e04
    29 schema:publisher Nd33231b4754b42819334cb5b2bfb23e7
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038946535
    31 https://doi.org/10.1007/978-3-642-21593-3_39
    32 schema:sdDatePublished 2019-04-16T08:56
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher N0e2e22c4f1ee44a986e5e1053e7010bf
    35 schema:url https://link.springer.com/10.1007%2F978-3-642-21593-3_39
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset chapters
    38 rdf:type schema:Chapter
    39 N0e2e22c4f1ee44a986e5e1053e7010bf schema:name Springer Nature - SN SciGraph project
    40 rdf:type schema:Organization
    41 N1f46169d84164e959ea5c36eb86d20e5 rdf:first sg:person.0635130640.43
    42 rdf:rest N238e8acfe40a468a9908a21d45ecaf73
    43 N238e8acfe40a468a9908a21d45ecaf73 rdf:first sg:person.01133760566.26
    44 rdf:rest rdf:nil
    45 N4b1f6dc80a6d4dab819e333cd1438d58 schema:familyName Kamel
    46 schema:givenName Mohamed
    47 rdf:type schema:Person
    48 N6fa676a3eab5489da614d34593d5be8d rdf:first Naf3ad1be5c5e4c658691822717a5a4ce
    49 rdf:rest rdf:nil
    50 N77bffa1b45cc4f01b4e38d2a1905ac66 schema:isbn 978-3-642-21592-6
    51 978-3-642-21593-3
    52 schema:name Image Analysis and Recognition
    53 rdf:type schema:Book
    54 N7f357be0da43410687a9e25ee7e0ca50 rdf:first N4b1f6dc80a6d4dab819e333cd1438d58
    55 rdf:rest N6fa676a3eab5489da614d34593d5be8d
    56 Naf3ad1be5c5e4c658691822717a5a4ce schema:familyName Campilho
    57 schema:givenName Aurélio
    58 rdf:type schema:Person
    59 Nb0155fb7a1124974a39a8d557a57264f schema:name readcube_id
    60 schema:value b98566e6a48f254c4cd2010c272f7f98773f35b6b36a0ab28535f09cc013807d
    61 rdf:type schema:PropertyValue
    62 Nc373cf3dd62043119cef4e3cb5ec2871 schema:name dimensions_id
    63 schema:value pub.1038946535
    64 rdf:type schema:PropertyValue
    65 Nd33231b4754b42819334cb5b2bfb23e7 schema:location Berlin, Heidelberg
    66 schema:name Springer Berlin Heidelberg
    67 rdf:type schema:Organisation
    68 Ne9df279b3cc5475a9a9d17632d99f534 rdf:first sg:person.014647312360.53
    69 rdf:rest N1f46169d84164e959ea5c36eb86d20e5
    70 Nfa8adbf1b4ba48cc9188f6619f453e04 schema:name doi
    71 schema:value 10.1007/978-3-642-21593-3_39
    72 rdf:type schema:PropertyValue
    73 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Engineering
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Resources Engineering and Extractive Metallurgy
    78 rdf:type schema:DefinedTerm
    79 sg:person.01133760566.26 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    80 schema:familyName Kamel
    81 schema:givenName Mohamed S.
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26
    83 rdf:type schema:Person
    84 sg:person.014647312360.53 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    85 schema:familyName Miao
    86 schema:givenName Yun-Qian
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014647312360.53
    88 rdf:type schema:Person
    89 sg:person.0635130640.43 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    90 schema:familyName Fieguth
    91 schema:givenName Paul
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635130640.43
    93 rdf:type schema:Person
    94 sg:pub.10.1007/3-540-47969-4_44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013439571
    95 https://doi.org/10.1007/3-540-47969-4_44
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1016/s0262-8856(02)00129-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022579526
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1109/34.899946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157204
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1109/78.978374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061231793
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1109/icarcv.2010.5707796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094616701
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1109/iccv.2003.1238321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094541097
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1109/icpr.2010.882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094879985
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1109/jproc.2003.823141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061296223
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1109/nsspw.2006.4378824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093813026
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1109/tpami.2008.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743659
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1145/1177352.1177355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003634065
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1175/1520-0493(1998)126<0796:dauaek>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013190770
    118 rdf:type schema:CreativeWork
    119 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
    120 schema:name Department of Electrical and Computer Engineering, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
    121 Department of System Design Engineering, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
    122 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...