Multi-Valued Neurons: Hebbian and Error-Correction Learning View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Igor Aizenberg

ABSTRACT

In this paper, we observe some important aspects of Hebbian and errorcorrection learning rules for the multi-valued neuron with complex-valued weights. It is shown that Hebbian weights are the best starting weights for the errorcorrection learning. Both learning rules are also generalized for a complex-valued neuron whose inputs and output are arbitrary complex numbers. More... »

PAGES

33-40

Book

TITLE

Advances in Computational Intelligence

ISBN

978-3-642-21500-1
978-3-642-21501-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-21501-8_5

DOI

http://dx.doi.org/10.1007/978-3-642-21501-8_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000619324


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Texas A&M University \u2013 Texarkana", 
          "id": "https://www.grid.ac/institutes/grid.264762.3", 
          "name": [
            "Department of Computer Science, Texas A&M University-Texarkana, P.O. Box 5518, Texarkana, TX\u00a075505-5518, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aizenberg", 
        "givenName": "Igor", 
        "id": "sg:person.010651634015.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010651634015.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1109/tnn.2001.925572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047734394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-006-0075-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049275324", 
          "https://doi.org/10.1007/s00500-006-0075-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-006-0075-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049275324", 
          "https://doi.org/10.1007/s00500-006-0075-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1051979123", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3115-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051979123", 
          "https://doi.org/10.1007/978-1-4757-3115-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3115-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051979123", 
          "https://doi.org/10.1007/978-1-4757-3115-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.548176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2003.813844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061716601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2007.914158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2010.2082561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cnna.1992.274330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086276533"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "In this paper, we observe some important aspects of Hebbian and errorcorrection learning rules for the multi-valued neuron with complex-valued weights. It is shown that Hebbian weights are the best starting weights for the errorcorrection learning. Both learning rules are also generalized for a complex-valued neuron whose inputs and output are arbitrary complex numbers.", 
    "editor": [
      {
        "familyName": "Cabestany", 
        "givenName": "Joan", 
        "type": "Person"
      }, 
      {
        "familyName": "Rojas", 
        "givenName": "Ignacio", 
        "type": "Person"
      }, 
      {
        "familyName": "Joya", 
        "givenName": "Gonzalo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-21501-8_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-21500-1", 
        "978-3-642-21501-8"
      ], 
      "name": "Advances in Computational Intelligence", 
      "type": "Book"
    }, 
    "name": "Multi-Valued Neurons: Hebbian and Error-Correction Learning", 
    "pagination": "33-40", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-21501-8_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "02f2e88cd44074635f75d6af141d48f32017e7b16e0c64384d614e6f76af9ca4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000619324"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-21501-8_5", 
      "https://app.dimensions.ai/details/publication/pub.1000619324"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T15:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000243.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-21501-8_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21501-8_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21501-8_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21501-8_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21501-8_5'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-21501-8_5 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Nde03092ac2854bb2a5762a449559c884
4 schema:citation sg:pub.10.1007/978-1-4757-3115-6
5 sg:pub.10.1007/s00500-006-0075-5
6 https://app.dimensions.ai/details/publication/pub.1051979123
7 https://doi.org/10.1109/72.548176
8 https://doi.org/10.1109/cnna.1992.274330
9 https://doi.org/10.1109/tnn.2001.925572
10 https://doi.org/10.1109/tnn.2003.813844
11 https://doi.org/10.1109/tnn.2007.914158
12 https://doi.org/10.1109/tnn.2010.2082561
13 schema:datePublished 2011
14 schema:datePublishedReg 2011-01-01
15 schema:description In this paper, we observe some important aspects of Hebbian and errorcorrection learning rules for the multi-valued neuron with complex-valued weights. It is shown that Hebbian weights are the best starting weights for the errorcorrection learning. Both learning rules are also generalized for a complex-valued neuron whose inputs and output are arbitrary complex numbers.
16 schema:editor Ne65d7c8ae80a4ee4bafbebcc14bc1984
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf Nd41a2890e24d412b9380de2cfcf5bb99
21 schema:name Multi-Valued Neurons: Hebbian and Error-Correction Learning
22 schema:pagination 33-40
23 schema:productId N5417dc9f96d344f6b667265f699219a5
24 N8d9443da82e54e3fac61121a59abf9ae
25 Nbc131dbda97e4bc1af37ff70ae049abb
26 schema:publisher N8d05a329f5d74f17aedebc89c27f537c
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000619324
28 https://doi.org/10.1007/978-3-642-21501-8_5
29 schema:sdDatePublished 2019-04-15T15:18
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N0e83e29cee9b41eeb78947f79ca4b2bf
32 schema:url http://link.springer.com/10.1007/978-3-642-21501-8_5
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N0e83e29cee9b41eeb78947f79ca4b2bf schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N117f4391f7ea4d5981a05b122a73dffb rdf:first Nbb40bf6e26d4420b94d1825903d7b5f4
39 rdf:rest rdf:nil
40 N41e5e384e0724146b7224832fa6ce3b6 schema:familyName Rojas
41 schema:givenName Ignacio
42 rdf:type schema:Person
43 N4f3b515e9be64f838268c37af06d25ec schema:familyName Cabestany
44 schema:givenName Joan
45 rdf:type schema:Person
46 N5417dc9f96d344f6b667265f699219a5 schema:name doi
47 schema:value 10.1007/978-3-642-21501-8_5
48 rdf:type schema:PropertyValue
49 N8d05a329f5d74f17aedebc89c27f537c schema:location Berlin, Heidelberg
50 schema:name Springer Berlin Heidelberg
51 rdf:type schema:Organisation
52 N8d9443da82e54e3fac61121a59abf9ae schema:name readcube_id
53 schema:value 02f2e88cd44074635f75d6af141d48f32017e7b16e0c64384d614e6f76af9ca4
54 rdf:type schema:PropertyValue
55 Nbb40bf6e26d4420b94d1825903d7b5f4 schema:familyName Joya
56 schema:givenName Gonzalo
57 rdf:type schema:Person
58 Nbc131dbda97e4bc1af37ff70ae049abb schema:name dimensions_id
59 schema:value pub.1000619324
60 rdf:type schema:PropertyValue
61 Nd41a2890e24d412b9380de2cfcf5bb99 schema:isbn 978-3-642-21500-1
62 978-3-642-21501-8
63 schema:name Advances in Computational Intelligence
64 rdf:type schema:Book
65 Nde03092ac2854bb2a5762a449559c884 rdf:first sg:person.010651634015.21
66 rdf:rest rdf:nil
67 Ne65d7c8ae80a4ee4bafbebcc14bc1984 rdf:first N4f3b515e9be64f838268c37af06d25ec
68 rdf:rest Ne750b58a2a0f41b9b8fb9cb7196592ea
69 Ne750b58a2a0f41b9b8fb9cb7196592ea rdf:first N41e5e384e0724146b7224832fa6ce3b6
70 rdf:rest N117f4391f7ea4d5981a05b122a73dffb
71 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
72 schema:name Medical and Health Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
75 schema:name Neurosciences
76 rdf:type schema:DefinedTerm
77 sg:person.010651634015.21 schema:affiliation https://www.grid.ac/institutes/grid.264762.3
78 schema:familyName Aizenberg
79 schema:givenName Igor
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010651634015.21
81 rdf:type schema:Person
82 sg:pub.10.1007/978-1-4757-3115-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051979123
83 https://doi.org/10.1007/978-1-4757-3115-6
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/s00500-006-0075-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049275324
86 https://doi.org/10.1007/s00500-006-0075-5
87 rdf:type schema:CreativeWork
88 https://app.dimensions.ai/details/publication/pub.1051979123 schema:CreativeWork
89 https://doi.org/10.1109/72.548176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218830
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1109/cnna.1992.274330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086276533
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1109/tnn.2001.925572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047734394
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/tnn.2003.813844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716601
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/tnn.2007.914158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717348
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/tnn.2010.2082561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717794
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.264762.3 schema:alternateName Texas A&M University – Texarkana
102 schema:name Department of Computer Science, Texas A&M University-Texarkana, P.O. Box 5518, Texarkana, TX 75505-5518, USA
103 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...