Detecting Bad-Mouthing Attacks on Reputation Systems Using Self-Organizing Maps View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Z. Banković , J. C. Vallejo , D. Fraga , J. M. Moya

ABSTRACT

It has been demonstrated that rating trust and reputation of individual nodes is an effective approach in distributed environments in order to improve security, support decision-making and promote node collaboration. Nevertheless, these systems are vulnerable to deliberate false or unfair testimonies. In one scenario the attackers collude to give negative feedback on the victim in order to lower or destroy its reputation. This attack is known as bad mouthing attack, and it can significantly deteriorate the performances of the network. The existing solutions for coping with bad mouthing are mainly concentrated on prevention techniques. In this work we propose a solution that detects and isolates the above mentioned attackers, impeding them in this way to further spread their malicious activity. The approach is based on detecting outliers using clustering, in this case self-organizing maps. An important advantage of this approach is that we have no restrictions on training data, and thus there is no need for any data pre-processing. Testing results demonstrates the capability of the approach in detecting bad mouthing attack in various scenarios. More... »

PAGES

9-16

Book

TITLE

Computational Intelligence in Security for Information Systems

ISBN

978-3-642-21322-9
978-3-642-21323-6

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-21323-6_2

DOI

http://dx.doi.org/10.1007/978-3-642-21323-6_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053640944


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Dep. Ingenier\u00eda Electr\u00f3nica, Universidad Polit\u00e9cnica de Madrid, Av. Complutense 30, 28040\u00a0Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bankovi\u0107", 
        "givenName": "Z.", 
        "id": "sg:person.013534273534.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013534273534.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Dep. Ingenier\u00eda Electr\u00f3nica, Universidad Polit\u00e9cnica de Madrid, Av. Complutense 30, 28040\u00a0Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vallejo", 
        "givenName": "J. C.", 
        "id": "sg:person.0606356734.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606356734.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Dep. Ingenier\u00eda Electr\u00f3nica, Universidad Polit\u00e9cnica de Madrid, Av. Complutense 30, 28040\u00a0Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fraga", 
        "givenName": "D.", 
        "id": "sg:person.01263647634.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263647634.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Dep. Ingenier\u00eda Electr\u00f3nica, Universidad Polit\u00e9cnica de Madrid, Av. Complutense 30, 28040\u00a0Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moya", 
        "givenName": "J. M.", 
        "id": "sg:person.07662217004.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662217004.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3390/s91109380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007608279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/352871.352889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010906237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.comcom.2007.04.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045892885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.comcom.2010.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053015684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ptp.2003.1231522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093270904"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "It has been demonstrated that rating trust and reputation of individual nodes is an effective approach in distributed environments in order to improve security, support decision-making and promote node collaboration. Nevertheless, these systems are vulnerable to deliberate false or unfair testimonies. In one scenario the attackers collude to give negative feedback on the victim in order to lower or destroy its reputation. This attack is known as bad mouthing attack, and it can significantly deteriorate the performances of the network. The existing solutions for coping with bad mouthing are mainly concentrated on prevention techniques. In this work we propose a solution that detects and isolates the above mentioned attackers, impeding them in this way to further spread their malicious activity. The approach is based on detecting outliers using clustering, in this case self-organizing maps. An important advantage of this approach is that we have no restrictions on training data, and thus there is no need for any data pre-processing. Testing results demonstrates the capability of the approach in detecting bad mouthing attack in various scenarios.", 
    "editor": [
      {
        "familyName": "Herrero", 
        "givenName": "\u00c1lvaro", 
        "type": "Person"
      }, 
      {
        "familyName": "Corchado", 
        "givenName": "Emilio", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-21323-6_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-21322-9", 
        "978-3-642-21323-6"
      ], 
      "name": "Computational Intelligence in Security for Information Systems", 
      "type": "Book"
    }, 
    "name": "Detecting Bad-Mouthing Attacks on Reputation Systems Using Self-Organizing Maps", 
    "pagination": "9-16", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-21323-6_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ff7fbfcc4d256ab9e9bc83e4bee51d18b95174c68afb84f52b97b6d5c0b1a956"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053640944"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-21323-6_2", 
      "https://app.dimensions.ai/details/publication/pub.1053640944"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000276.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-21323-6_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21323-6_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21323-6_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21323-6_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-21323-6_2'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-21323-6_2 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N025705de880a4eddb7c24b2af5fe5a56
4 schema:citation https://doi.org/10.1016/j.comcom.2007.04.022
5 https://doi.org/10.1016/j.comcom.2010.02.006
6 https://doi.org/10.1109/ptp.2003.1231522
7 https://doi.org/10.1145/352871.352889
8 https://doi.org/10.3390/s91109380
9 schema:datePublished 2011
10 schema:datePublishedReg 2011-01-01
11 schema:description It has been demonstrated that rating trust and reputation of individual nodes is an effective approach in distributed environments in order to improve security, support decision-making and promote node collaboration. Nevertheless, these systems are vulnerable to deliberate false or unfair testimonies. In one scenario the attackers collude to give negative feedback on the victim in order to lower or destroy its reputation. This attack is known as bad mouthing attack, and it can significantly deteriorate the performances of the network. The existing solutions for coping with bad mouthing are mainly concentrated on prevention techniques. In this work we propose a solution that detects and isolates the above mentioned attackers, impeding them in this way to further spread their malicious activity. The approach is based on detecting outliers using clustering, in this case self-organizing maps. An important advantage of this approach is that we have no restrictions on training data, and thus there is no need for any data pre-processing. Testing results demonstrates the capability of the approach in detecting bad mouthing attack in various scenarios.
12 schema:editor Nae3972bf126e4f0abf5640048e080e9d
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N46438646d3154d5ead497565edcdd435
17 schema:name Detecting Bad-Mouthing Attacks on Reputation Systems Using Self-Organizing Maps
18 schema:pagination 9-16
19 schema:productId N254580c6346a401aba8d3f4c25457707
20 N400ca7e3f1cb4e9a9ae3b2edf377bc60
21 N5deed0ce4b464a519287568ea3c2afe5
22 schema:publisher Nb3a2fc4ce1c34f68a18e5d83cffbca2a
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053640944
24 https://doi.org/10.1007/978-3-642-21323-6_2
25 schema:sdDatePublished 2019-04-15T13:31
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N287a31bb9d474c3e996983f408d63048
28 schema:url http://link.springer.com/10.1007/978-3-642-21323-6_2
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N025705de880a4eddb7c24b2af5fe5a56 rdf:first sg:person.013534273534.80
33 rdf:rest Ncb00564aa3264f8891e9eb25f19cc2bc
34 N0b94cb8c6b7f479baa90ab7fc14f4679 rdf:first sg:person.01263647634.13
35 rdf:rest Nf52c4958b12242779b129a12a996d14e
36 N254580c6346a401aba8d3f4c25457707 schema:name readcube_id
37 schema:value ff7fbfcc4d256ab9e9bc83e4bee51d18b95174c68afb84f52b97b6d5c0b1a956
38 rdf:type schema:PropertyValue
39 N287a31bb9d474c3e996983f408d63048 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N400ca7e3f1cb4e9a9ae3b2edf377bc60 schema:name dimensions_id
42 schema:value pub.1053640944
43 rdf:type schema:PropertyValue
44 N46438646d3154d5ead497565edcdd435 schema:isbn 978-3-642-21322-9
45 978-3-642-21323-6
46 schema:name Computational Intelligence in Security for Information Systems
47 rdf:type schema:Book
48 N550b80947a604db5929c0d57869fd8e8 schema:familyName Herrero
49 schema:givenName Álvaro
50 rdf:type schema:Person
51 N5deed0ce4b464a519287568ea3c2afe5 schema:name doi
52 schema:value 10.1007/978-3-642-21323-6_2
53 rdf:type schema:PropertyValue
54 Nae3972bf126e4f0abf5640048e080e9d rdf:first N550b80947a604db5929c0d57869fd8e8
55 rdf:rest Nf737841f5d544a11ab6b9217993f7a3c
56 Nb3a2fc4ce1c34f68a18e5d83cffbca2a schema:location Berlin, Heidelberg
57 schema:name Springer Berlin Heidelberg
58 rdf:type schema:Organisation
59 Nb437a9e7856742ff82ad1c5e04a08a82 schema:familyName Corchado
60 schema:givenName Emilio
61 rdf:type schema:Person
62 Ncb00564aa3264f8891e9eb25f19cc2bc rdf:first sg:person.0606356734.19
63 rdf:rest N0b94cb8c6b7f479baa90ab7fc14f4679
64 Nf52c4958b12242779b129a12a996d14e rdf:first sg:person.07662217004.56
65 rdf:rest rdf:nil
66 Nf737841f5d544a11ab6b9217993f7a3c rdf:first Nb437a9e7856742ff82ad1c5e04a08a82
67 rdf:rest rdf:nil
68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
69 schema:name Information and Computing Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information Systems
73 rdf:type schema:DefinedTerm
74 sg:person.01263647634.13 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
75 schema:familyName Fraga
76 schema:givenName D.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263647634.13
78 rdf:type schema:Person
79 sg:person.013534273534.80 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
80 schema:familyName Banković
81 schema:givenName Z.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013534273534.80
83 rdf:type schema:Person
84 sg:person.0606356734.19 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
85 schema:familyName Vallejo
86 schema:givenName J. C.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606356734.19
88 rdf:type schema:Person
89 sg:person.07662217004.56 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
90 schema:familyName Moya
91 schema:givenName J. M.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662217004.56
93 rdf:type schema:Person
94 https://doi.org/10.1016/j.comcom.2007.04.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045892885
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.comcom.2010.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053015684
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1109/ptp.2003.1231522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093270904
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1145/352871.352889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010906237
101 rdf:type schema:CreativeWork
102 https://doi.org/10.3390/s91109380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007608279
103 rdf:type schema:CreativeWork
104 https://www.grid.ac/institutes/grid.5690.a schema:alternateName Technical University of Madrid
105 schema:name Dep. Ingeniería Electrónica, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain
106 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...